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Outline

● Constrained Horn Clauses (CHC) for verification

● CHC transformation rules and strategies

● Semantics-based translation to CHC 

● CHC specialization as CHC solving 

● Verification of relational properties 
(e.g. equivalence, functionality, non-interference)

● Verification of programs with 
inductively-defined data structures  (e.g., lists and trees)

● Verification of time-aware business processes

● VeriMAP demo
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● Constrained Horn Clauses (aka Constraint Logic Programs):
A

0
 ← c, A

1
, … , A

n

where: (1) A0 is false or an atom, (2) A1, …, An, n≥0, are atoms,  and 
(3) c is a constraint in a first order theory Th. 
All variables are assumed to be universally quantified in front

Many verification problems can be encoded as CHC satisfiability

● Satisfiability: Given a set P of CHC, has P  ∪ Th a model?

● Solving:  Compute a model of P  ∪ Th, expressed in Th (if sat) or return 
unsat; solvability implies satisfiability, not vice versa

● CHC solvers: SMT solvers for the Horn fragment with Linear Integer/Real 
Arithmetic, Booleans, Arrays, Lists, Bit-vectors 
(e.g., Z3 (SPACER), Eldarica, HSF, MathSAT, Hoice, RAHFT/PECOS, VeriMAP, …)

● CHC tools: Ciao, SeaHorn, ...

Constrained Horn Clauses (CHC)



LOPSTR 2018Frankfurt am Main, September 5th, 2018 4

Imperative program verification via CHC solving

Specification
{n>=0} x=0; y=0; while (x<n) { x=x+1; y=x+y} {y>=x}

Constrained Horn Clauses
p(X, Y, N) ← N>=0, X=0, Y=0                %Init
p(X1, Y1, N) ← X<N, X1=X+1, Y1=X1+Y, p(X, Y, N) %Loop
false ← X>=N, Y<X, p(X, Y, N)                %Exit

Translation

● Summing the first n integers

● Solution (i.e., model) of the CHCs: 

● CHC are solvable, hence satisfiable, and the specification is valid

p(X, Y, N)  ↦ X>=0, Y>=X
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CHC transformation for verification

● CHC transformations

– propagate constraints (backward and forward)

● Unfolding and constraint solving

– discover inductive invariants  (also using widening & convex-hull)

● Definition and folding 

– discover relations among predicates

● CHC transformations 

– preserve satisfiability

– preserve solvability, and can improve it

– can improve the effectiveness of state-of-the-art CHC solvers
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CHC transformation rules and strategies
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Transformations of Functional and Logic Programs

• Each rule application preserves the semantics: 
M(P0) = M(P1) =  ∙∙∙= M(Pn)

• The application of the rules is guided by a strategy that guarantees that Pn is more 
efficient than P0.

Initial program Final programP0    P1    ∙∙∙  Pn

where '' is an application of a transformation rule.

Transformation techniques introduced for improving functional and logic programs 
[Burstall-Darlington 1977, Tamaki-Sato 1984] can be adapted to ease satisfiability 
proofs for CHCs.
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Transformation Rules for CHCs

Initial clauses Final clausesS0    S1    ∙∙∙  Sn

where '' is an application of a transformation rule.
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Transformation Rules for CHCs

R1. Definition. Introduce a new predicate definition
introduce C:  newp(X) :- c, G

Si+1 = Si  {C}        Defs := Defs  {C} 

9

Initial clauses Final clausesS0    S1    ∙∙∙  Sn

where '' is an application of a transformation rule.
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R1. Definition. Introduce a new predicate definition
introduce C:  newp(X) :- c, G

Si+1 = Si  {C}        Defs := Defs  {C} 

R2. Unfolding. Apply a Resolution step

given C:  H :- c,A,G            A :- d1,G1  ...   A :- dm,Gm  in Si

derive         S = { H :- c,d1,G1,G  ...  H :- c,dm,Gm,G }

Si+1 = (Si - {C})  S

Initial clauses Final clausesS0    S1    ∙∙∙  Sn

where '' is an application of a transformation rule.

Transformation Rules for CHCs
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R3. Folding. Replace a conjunction with a new predicate

given C:  H :- d,B,G     in Si newp(X) :- c,B.  with  dc   in Defs

derive D:  H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

Transformation Rules for CHCs
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R3. Folding. Replace a conjunction with a new predicate

given C:  H :- d,B,G     in Si newp(X) :- c,B.  with  Th  ⊨ dc   in Defs

derive D:  H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C:  H :- c,B,G   in Si   with  Th  ⊨ c  d

derive D:  H :- d,B,G
Si+1 = (Si - {C})  {D}

Transformation Rules for CHCs
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R3. Folding. Replace a conjunction with a new predicate

given C:  H :- d,B,G     in Si newp(X) :- c,B.  with  Th  ⊨ dc   in Defs

derive D:  H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C:  H :- c,B,G   in Si   with  Th  ⊨ c  d

derive D:  H :- d,B,G
Si+1 = (Si - {C})  {D}

R5. Clause Removal. Remove a clause C with unsatisfiable constraint or subsumed by 
another 
Si+1 = (Si - {C})

Transformation Rules for CHCs
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R3. Folding. Replace a conjunction with a new predicate

given C:  H :- d,B,G     in Si newp(X) :- c,B.  with  Th  ⊨ dc   in Defs

derive D:  H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C:  H :- c,B,G   in Si   with  Th  ⊨ c  d

derive D:  H :- d,B,G
Si+1 = (Si - {C})  {D}

R5. Clause Removal. Remove a clause C with unsatisfiable constraint or subsumed by 
another 
Si+1 = (Si - {C})

Theorem [Tamaki-Sato 84,Etalle-Gabbrielli 96]: If every new definition is unfolded at least once 
in S0    S1    ∙∙∙  Sn then
 

S0 satisfiable iff Sn satisfiable

Transformation Rules for CHCs



LOPSTR 2018Frankfurt am Main, September 5th, 2018 15

• Transformation rules need to be guided by suitable strategies.

• Main idea: exploit some knowledge about the query to produce a customized, 
easier to verify set of clauses.

• Specialization [Gallagher,Leuschel,FPP,…]: Given a set of clauses S and a query
  false :- c,A, where A is atomic, transform S into a set of clauses SSP such that 

S  {false :- c,A} satisfiable     iff       SSP  {false :- c,A} satisfiable.

• Predicate Tupling (also known as Conjunctive Partial Deduction) [PP, Leuschel,…]: Given 
a set of clauses S and a query false :- c,G, where G is a (non-atomic) conjunction, 
introduce a new predicate newp(X) :- G and transform  set of clauses ST such that 

S  {false :- c,G} satisfiable    iff     ST  {false :- c,newp(X)} satisfiable.

Transformation strategies
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Specialization Strategy: An Example

false :- X<0, p(X,b).   % X. p(X,b)  X>=0       S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X).   % the X-th Turing machine halts on X
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Specialization Strategy: An Example

false :- X<0, p(X,b).   % X. p(X,b)  X>=0       S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X).   % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b).   % q(X) is a specialization of p(X,C)  S1

  % to a specific constraint on X and value of C
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Specialization Strategy: An Example

false :- X<0, p(X,b).   % X. p(X,b)  X>=0       S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X).   % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b).   % q(X) is a specialization of p(X,C)  S1

  % to a specific constraint on X and value of C

Unfold: q(X) :- X<0, X=Y+1, p(Y,b).       S2

q(X) :- X<0, X>=0, tm_halts(X). % clause removal
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Specialization Strategy: An Example

false :- X<0, p(X,b).   % X. p(X,b)  X>=0       S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X).   % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b).   % q(X) is a specialization of p(X,C)  S1

  % to a specific constraint on X and value of C

Unfold: q(X) :- X<0, X=Y+1, p(Y,b).       S2

q(X) :- X<0, X>=0, tm_halts(X). % clause removal

Fold:  false :- X<0, q(X). 

q(X) :- X<0, X=Y+1, q(Y).       S3

Satisfiability of S3 is easy to check: q(X)  false makes all clauses true (no facts for q)
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A Generic U/F Transformation Strategy

Define

Unfold

Replace 
Constraints

Remove 
Clauses

 Fold?

S0

Sn

no

yes
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Some Issues About the U/F Strategy

• Unfolding: Which atoms should be unfolded? When to stop?

• Constraint replacement: A suitable constraint reasoner is needed

• Definition: Suitable new predicates need to be introduced to guarantee 
termination and effectiveness of strategy

– Definitions are arranged in a tree

– New definitions possibly contain a generalized constraint

●  newp :- d, B ancestor  definition

●  newp :- c, B candidate  definition

●  newp :- g, B generalized  definition           c → g=gen(c,d)

– Generalization operators based on widening and convex-hull 
[Cousot-Cousot 77, Cousot-Halbwachs 78, Bagnara et al. 08] 
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Semantics-based translation to CHC 

Verification Conditions
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CHC Specialization as a Verification Condition Generator

CHC Specializer 

Program P in L

InterpL

Property F

L: Programming language

InterpL: CHC interpreter for L

VC: Verification Conditions, i.e.,
a set of CHCs independent of L
 

VC

F holds for P  iff  VC is satisfiable

The CHC specializer is parametric with respect to the programming  language L and 
the class of properties.
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● C-like imperative language with assignments, conditionals, jumps. 
While-loops translated to conditionals and jumps.

● Commands encoded as atomic assertions:  at(Label, Cmd).

Translating Imperative Programs into CHC

x=0; 
y=0; 
while (x<n) {
   x=x+1; 
   y=x+y
}

0.  x=0; 
1.  y=0; 
2.  if (x<n) 3 else 6;
3.  x=x+1; 
4.  y=x+y;
5.  goto 2;
h.  halt

at(0,asgn(int(x), int(0))).
at(1,asgn(int(y), int(0))).
at(2, ite(less(int(x), int(n)), 3, 6)).
at(3, asgn(int(x), plus(int(x), int(1)))).
at(4, asgn(int(y), plus(int(x), int(y)))).
at(5, goto(2)).
at(h, halt).
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A Small-Step Operational Semantics

• The operational semantics is a one-step transition relation between configurations

<n:cmd, env>      <n’:cmd’, env’>

where: n:cmd is a labelled command
 env is an environment mapping variable identifiers to values

• Assignment

<n: x=e, env>  <next(n), update(env, x, [e]env)>

next(n) is the next labelled command 
update(env, x, [e]env) updates the value of x to the value of expression e in env

• Conditional

<n: if (e) n1 else n2, env>  <at(n1), env> if  [e]env≠0
<n: if (e) n1 else n2, env>  <at(n2), env> if  [e]env=0

     at(n) is the labelled command with label n 

• Jump
 <n: goto n1, env>  <at(n1), env> 
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A CHC Interpreter for the Small-Step Semantics

● Configurations: cf(LC, Env)

where:

- LC is a labelled command represented as a term of the form cmd(L,C),

  L is a label, C is a command

- Env is an environment represented as a list of (variable-id,value) pairs:     

   [(x,X),(y,Y),(z,Z)]

● One-step transition relation between configurations:

tr( cf(LC1,Env1), cf(LC2,Env2) )
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assignment     x=e;

tr(  cf(cmd(L, asgn(X,E)), Env1),       cf(cmd(L1, C), Env2)       )   :-
nextlab(L,L1),                  % next label 
at(L1,C),                          % next command
eval(E,Env1,V),                    % evaluate expression
update(Env1,X,V,Env2). % update environment

More clauses for predicate tr to encode the semantics of the other commands.

CHC Interpreter (Asgn)

target configurationsource configuration
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Encoding Partial Correctness Properties

• Partial correctness specification (Hoare triple):

{ϕ} prog {ψ}

If the initial values of the program variables satisfy the precondition ϕ and prog 
terminates, then the final values of the program variables satisfy the postcondition ψ.

• CHC encoding of partial correctness:

• {ϕ} prog {ψ} is valid  iff  PC-prop is satisfiable.

false :- initConf(Cf), errReach(Cf).
errReach(Cf) :- errorConf(Cf). PC property
errReach(Cf) :- tr(Cf,Cf2), errReach(Cf2).
initConf(cf(C, Env)) :- at(0,C), ϕ(Env). Initial configuration
errorConf(cf(C, Env)) :- at(h,C), ¬ψ(Env). Error configuration
tr(Cf1,Cf2) :- … InterpL

PC-prop
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Problems of direct CHC encoding

● PC-prop includes a lot of complex structures and predicates:

– complex terms encoding configurations:

cf(cmd(L,asgn(X,Expr)),[(x,1),(y,0),(a,[2,3,4])])

– recursive predicates over lists encoding functions on the environment:

              update([(X,N)|Bs],X,V,[(X,V)|Cs]) :- ….  update(Bs,X,V,Cs)

● State-of-the-art CHC solvers hardly terminate when checking  the satisfiability of 
PC-prop 
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VCGen: Generating Verification Conditions

VCGen is a transformation strategy that specializes PC-prop to a given 
    {ϕ} prog {ψ}, 
removes explicit reference to the interpreter (function cf, predicates at, tr, etc.).

● All new definitions are of the form newp(X) :- errReach(cf(LC,Env)), corresponding to a 
program point. 

– Limited reasoning about constraints at specialization time (satisfiability only).

● VCGen is parametric wrt InterpL (to a large extent).

● If   PC-prop                       VC    then         PC-prop is satisfiable  iff  VC is satisfiable

– no complex terms or lists occur in VC 

VCGen
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Generating Verification Conditions: An Example

false :- initConf(Cf), errReach(Cf). PC-prop
errReach(Cf) :- errorConf(Cf).
errReach(Cf1) :- tr(Cf1,Cf2), errReach(Cf2).
initConf(cf(C, [(x,X),(y,Y),(n,N)])) :- at(0,C), N>=1.
errorConf(cf(C, [(x,X),(y,Y),(n,N)])) :- at(h,C), YX.
tr(Cf1,Cf2) :- …
…
at(0,asgn(int(x), int(0))).
…

{n>=1} SumUpto {y>x}

false :- N>=1, X=0, Y=0, p(X, Y, N). VC
p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, YX. 

CHC encoding: 

PC property: 

Verification 
Conditions: 

VCGen
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Two semantics for function calls

● Small-Step semantics  (SS)

– “dives into” the function definition

– VC are linear clauses (one atom in the body)

● Multi-Step semantics  (MS)

– “wraps” the whole function call      is defined in terms of ⇒ is defined in terms of ⇒ ⇒ is defined in terms of ⇒∗ 

– VC are non-linear

– reach(C,C).    
reach(C,C2) :- tr(C,C1), reach(C1,C2).

false :-  initConf(C1),  reach(C1,C2), errorConf(C2).

● more variables    (use variants of Leuschel’s Redundant Argument Filtering)
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Properties of VCGen

● The number of transformation steps is linear wrt the size of 
the imperative program P

● The size of VC (the number of CHC) is linear wrt the size of 
program P
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Short demo
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Experimental evaluation

● Other semantics: exceptions, etc.

● Checking the satisfiability of the VCs using QARMC, Z3 (PDR), MathSAT (IC3), 
Eldarica

● VCGen+QARMC compares favorably to HSF+QARMC 
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Comments

● Semantics-based Verification Condition generation is efficient and flexible

● Experiments with C, BPMN (business processes), Erlang  (ongoing) 

● Future work

– More language semantics

● Use formal semantics specifications of the K-Framework [Rosu et al.] 
ANSI C, OCaml, Python, PHP, Java, Javascript, Ethereum Virtual Machine…

– Make it accessible to third parties

● improve documentation

● References

– [DFPP - PPDP 15],  [DFPP-ScienceCompProgr 16]

– http://map.uniroma2.it/VeriMAP 

– http://map.uniroma2.it/vcgen
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Short demo
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CHC Specialization as CHC Solving

http://map.uniroma2.it/VeriMAP
http://map.uniroma2.it/vcgen


LOPSTR 2018Frankfurt am Main, September 5th, 2018 41

VCTransf: Specializing Verification Conditions

Define

Unfold

Replace 
Constraints

Remove 
Clauses

 Fold?

VC

VC’

newp(X) :- c, p(X) 

false :- c, p(X) 

apply theory of constraints

VC is satisfiable  iff  VC’ is satisfiable 

Specializing verification 
conditions by propagating 
constraints.

Introduction of new 
predicates by generalization 
(e.g., widening and convex 
hull techniques)

no

yes
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VCTransf as CHC Solving

The effect of applying VCTransf can be:

1. A set VC’ of verification conditions without constrained facts for the predicates on which 
the queries depend (i.e., no clauses of the form p(X) :- c).
VC’ is satisfiable.

2. A set VC’ of verification conditions including false :- true.
VC’ is unsatisfiable. 

3. Neither 1 nor 2 (constrained facts of the form p(X) :- c, but not false :- true). 
Satisfiability is unknown.

false :- X<0, q(X).         VC’
q(X) :- X<0, X=Y+1, q(Y). 

false :- X<0, p(X,b).             VC
p(X,C) :- X=Y+1, p(Y,C).
p(X,a).
p(X,b) :- X0, tm_halts(X). No constrained facts: VC’ satisfiable

VCTransf

propagation of constraint X<0 and constant b
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Iterated CHC Specialization

● If the satisfiability of VC’ is unknown   VCTransf can be iterated.

● Between two applications of VCTransf we can apply the Reversal transformation 
(particular case of the query-answer transformation [KafleGallagher 15] for linear 
programs) that interchanges premises and conclusions of clauses (backward reasoning 
from queries simulates forward reasoning from facts).

false :- a(X), p(X).           VC
p(X) :- c(X,Y), p(Y).
p(X) :- b(X).

p(X) :- a(X).                 VC’
p(Y) :- c(X,Y), p(X).
false :- b(X), p(X).

Reversal

VC is satisfiable  iff  VC’ is satisfiable 

VCTransf Reversal VCTransf VCTransf
VC0                  VC1                    VC2                       VC3                                         ∙∙∙ VCn
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Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X. 
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Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X. 

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

VCTransf



LOPSTR 2018Frankfurt am Main, September 5th, 2018 46

Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X. 

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

new2(X1, Y1, N) :- N>=1, X1=1, Y1=1.  VC2

new3(X1, Y1, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new2(X, Y, N).
new3(X1, Y1, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X, Y, N).
false :- N>=1, Y>=1, X>=N, Y<X, new3(X, Y, N).

VCTransf

Reversal
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Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X. 

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

new2(X1, Y1, N) :- N>=1, X1=1, Y1=1.  VC2

new3(X1, Y1, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new2(X, Y, N).
new3(X1, Y1, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X, Y, N).
false :- N>=1, Y>=1, X>=N, Y<X, new3(X, Y, N).

false :- N>=1, Y>=1, X>=N, Y<X, new4(X, Y, N).  VC3

VCTransf

VCTransf

Reversal

No constrained facts. VC3 is satisfiable
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 VeriMAP architecture
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Short demo
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Experimental evaluation
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Array constraints

● if a[i] = v  then  read(A,I,V) holds
● if a[i] := v  then  write(A,I,V,B) holds, that is

B is an array identical to A
except that B has value V in position I 

● Constraint Handling Rules [Frühwirth et al.] for constraint reasoning 

Array-Congruence-1:     if i=j then a[i]=a[j]

read(A,I,X) \ read(A1,J,Y)  A=A1,I=J | X=Y.⇔ A=A1,I=J | X=Y.
Array-Congruence-2:     if a[i <>a[j]  then  <>j] i

read(A,I,X),read(A1,J,Y)  A=A1, X<>Y | I<>J.⇒ is defined in terms of ⇒
Read-Over-Write:           {a[i]=x; y=a[j]}   if i=j then x=y

write(A,I,X,A1) \ read(A2,J,Y)  A1==A2 | (I=J,X=Y) ; (I<>J,⇔ A=A1,I=J | X=Y. read(A,J,Y)).
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Array constraint generalization

● Logic variables are decorated with identifiers of the imperative program
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Experimental evaluation

References 
● [DFPP – Fundamenta Informaticae 2017]
● http://map.uniroma2.it/smc/array-chr/ 
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Verification of relational properties 
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Relational Properties

• Proving relations between fragments of program versions (e.g., equivalence) 
may be easier than proving the correctness of the new version from scratch.

• … proving relations between executions of the same program with different 
input

• Stepwise program development

Optimization

Refactoring

New features

… …

http://map.uniroma2.it/smc/array-chr/
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An Example

z2 = x2   y2*

• Relational property
if  x1=x2 and x2y2 before execution of sum_upto and prod
and execution terminates, then  z1z2 

(Non-tail) recursive                                             Iterative

z1 =     ∑   n1
n1=0

x1
= x1*(x1+1)/2
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Verification of Relational Properties

• State-of-the-art verification methods for relational properties are 
specific for the given programming language PL and class of 
properties RL [Benton 2004, Barthe et al. 2011, Felsing et al. 2014]

Verifier for PL and RL

P1, P2: programs in programming language PL
rel: property in logic RL

P1 rel P2 true

false

unable to verify
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Verification through Horn Clause 
Transformation

CHC as a meta-language for programs, properties, and semantics.

Translator to CHC
P1 rel P2 

Semantics of PL 
and RL (in CHC)

CHC Solver
(Eldarica, Z3, …)

Transformer of CHC

Parametric w.r.t. PL and RL.
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Relational properties

• Terminating computation 

P, env0  envh     iff      <l0:c0, env0> * <lh:halt, envh >

• Relational Property P1, P2 programs with disjoint variables, , constraints 

   {} P1  P2 {}

is valid iff for all disjoint environments  env01  and env02  

if      ⊨ [env01  env02],        P1, env01  envh1,      P2, env02  envh2  

then      ⊨ [envh1  envh2]
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Example, cont’d

z1 =     ∑   n1
n1=0

x1
z2 = x2   y2*

Relational Property:
{x1=x2  x2y2} sum_upto  prod {z1z2}

(Non-tail) recursive                                             Iterative

= x1*(x1+1)/2
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Encoding the Transition Semantics in CHCs

• Reflexive-transitive closure  * :

reach(C,C) 

reach(C,C2)  tr(C,C1), reach(C1,C2)

• Terminating computation  P, env0 envh  [input/output relation of P]:

p(X,X’)  initConf(C,X), reach(C,C’), finalConf(C’,X’)

– initConf(C,X):     X is the value of the variables in the initial configuration C

– finalConf(C’,X’): X’ is the value of the variables in the final configuration C’



LOPSTR 2018Frankfurt am Main, September 5th, 2018 62

Translating Relational Properties into CHCs

• {} P1  P2 {}

Prop:     false  pre(X,Y), p1(X,X’), p2(Y,Y’), neg_post(X’,Y’)

X,Y,X’,Y’: tuples of values for the variables of P1, P2, resp.

• TProp = {Prop}  {clauses for p1 and p2}

Correctness of Translation:   

{} P1  P2 {}  is valid     iff        TProp is satisfiable

• Example:    false  X1=X2, X2Y2, Z1’>Z2’, 

            sum_upto(X1,Z1,X1’,Z1’), prod(X2,Y2,Z2,X2’,Y2’,Z2’)

 P1 P2







LOPSTR 2018Frankfurt am Main, September 5th, 2018 63

Example Cont’d: CHC Specialization

false  X1=X2, X2Y2, Z1’>Z2’, su(X1,Z1’), pr(X2,Y2,Z2’)
su(X,Z)  f(X,Z)
f(N,Z)  N 0, Z=0
f(N,Z)  N1, N1=N−1, Z=R+N, f(N1,R)
pr(X,Y,Z)  W=0, g(X,Y,W,Z)
g(N,P,R,R)  N 0
g(N,P,R,R2)  N1, N1=N−1, R1=P+R, g(N1,P,R1,R2)

false   X1=X2, X2Y2, Z1’>Z2’, 
sum_upto(X1,Z1,X1’,Z1’), prod(X2,Y2,Z2,X2’,Y2’,Z2’)

+ clauses for sum_upto and prod

CHC Specializer
Specialized predicates
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Limitations of the Specialized CHCs

• To show the satisfiability of

false  c(X,Y), p1(X), p2(Y) 

a CHC solver looks for c1(X), c2(Y) such that in TSP  Th:

p1(X)  c1(X)                  

p2(Y)  c2(Y)  

c1(X), c2(Y), c(X,Y)  false

• To show the satisfiability of 

false  X1=X2, X2Y2, Z1’>Z2’, su(X1,Z1’), pr(X2,Y2,Z2’)

 a CHC solver has to show that:   

su(X1,Z1’)  Z1’ 1+ … + X1

pr(X2,Y2,Z2’)  Z2’ >=  X2Y2

Z1’ 1+ … + X1, Z2’ >=X2Y2, X1=X2, X2Y2, Z1’>Z2’  false

• Impossible for CHC solvers over LIA! 
Nonlinear constraints cannot be derived.
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false  X1=X2, X2Y2, Z1’>Z2’, 
su(X1,Z1’), pr(X2,Y2,Z2’)

su(X,Z)  f(X,Z)
f(N,Z)  N 0, Z=0
f(N,Z)  N1, N1=N−1, Z=R+N, f(N1,R)
pr(X,Y,Z)  W=0, g(X,Y,W,Z)
g(N,P,R,R)  N 0
g(N,P,R,R2)  

N1, N1=N−1, R1=P+R, 
g(N1,P,R1,R2)

Example Cont’d: Predicate Pairing

false  N Y, W=0, Z1’>Z2’, 
fg(N,Z1’,Y,W,Z2’)

fg(N,Z1’,Y,Z2’,Z2’)  N 0, Z1’=0
fg(N,Z1’, Y,W,Z2’)  

N>1, N1=N−1, Z1’=R+N, M=Y+W, 
fg(N1,R,Y,M,Z2’)

Predicate Pairing

• fg(N,Z1’,Y,0,Z2’)  N>Y  Z1’ Z2’  
(N>Y  Z1’ Z2’)  N Y  W=0  Z1’>Z2’  false

• Non-linear arithmetic relations not needed for proving satisfiability.  
CHC solvers over LIA (Eldarica, Z3) can prove satisfiability.
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Inferring Inter-Predicate Relations 
via Predicate Pairing

Predicate Pairing
false  c(X,Y), p1(X), p2(Y) false  c(X,Y), p12(X,Y) 

• To prove satisfiability find constraint d(X,Y) such that:

p12(X,Y)  d(X,Y)  
d(X,Y), c(X,Y)  false

• Introduce  new predicates standing for conjunctions:

• d(X,Y) captures relations between the variables of p1 and the variables of p2.

• Predicate pairing derives new clauses for conjunctions of predicates by
unfold/fold transformations and preserves satisfiability.
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Properties of the CHC transformation rules

• CHC transformation rules  preserve satisfiability 
            [Tamaki-Sato 84,Etalle-Gabbrielli 96]

• Theorem [DFPP 17]  
Let  A be a subset of the constraints of Th.  
Let P → … → Q be a transformation sequence

if P has an  A-definable model       then    Q has an  A-definable model

• Thus, CHC transformation rules  preserve solvability (in abstract 
domains too). 

Example:  constraints  over  LIA. 
A can be LIA or Octagons, difference constraints, ….
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Implementation in VeriMAP
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Short demo
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Verification Problems

Types of Verified Properties and Programs

• NLIN: nonlinear or nested recursion 

(e.g. some Ackermann variants, Sudan, McCarthy’s 91, Dijkstra’s fusc)

• MON: monotonicity
if   i1 >= i2   then  o1 >= o2     

• INJ: injectivity
if   i1 <> i2   then  o1 <> o2     

• FUN: functional dependency among variables
if   i1 = i2     then  o1 = o2

• NINT: non-interference

public output variables depend on public input variables only 

• LOPT: loop and other compiler optimizations

e.g. loop-unswitching, loop-fission, loop-fusion, loop-reversal, strength-
reduction
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Verification Problems

Types of Verified Properties and Programs

• ITE: equivalence of two iterative programs on integers

• ARR: equivalence of two programs on arrays

• REC: equivalence of two recursive programs

• I-R: equivalence of an iterative and a (non-tail) recursive program

e.g. greatest common divisor,  n-th triangular number

• COMP: composition of different number of loops of integer and array 
progr.

• PCOR:   partial correctness properties of an iterative program 

wrt a recursive functional postcondition

31 programs out of 163 are encoded using non-linear CHC
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Experimental evaluation

● Timeout: 300 seconds

● No timeout occurred during 
the application of the PP 
strategy.

● CHC size increase due to PP 
but no performance 
degradation
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Comments

• Our method for relational verification: 

Translation to CHCs; 

Satisfiability-Preserving Transformations of CHCs;

CHC Solving

• Parametric wrt programming language

• Fully automatic and effective on small-sized programs

Future work
• Proving relations across programming languages to validate program 

translation/compilation

References
• [DFPP – SAS 16]     [DFPP – TPLP 17] 

•  http://map.uniroma2.it/relprop/ 
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Verification of programs with 
inductively-defined data structures
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Verification of functional programs

● OCaml: A statically typed, functional, higher-order, OO language

● Computing the sum and the maximum of the absolute values of the
elements of a list:

type list = Nil | Cons of int * list

let rec listsum l = match l with
  | Nil -> 0
  | Cons(x, xs) → (abs x) + listsum xs

let rec listmax l = match l with
  | Nil -> 0
  | Cons(x, xs) → let m = listmax xs in max (abs x) m

● (Relational) Property: l. listsum(l) >= listmax(l)

http://map.uniroma2.it/relprop/
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Translation into CHCs

● The OCaml program is translated into CHCs:

76

listsum([],S) ← S=0
listsum([X|Xs],S) ← S=S1+A, abs(X,A), listsum(Xs,S1)
listmax([],M) ← M=0
listmax([X|Xs],M) ← abs(X,A), max(A,M1,M), listmax(Xs,M1)
abs(X,A) ← (X>=0, A=X)  (X<0, A= -X)
max(A,M1,M) ← (A>=M1, M=A)  (A<M1, M=M1)

● The property is translated into a CHC query:
    false ← S<M, sum(L,S), max(L,M)

● The clauses are satisfiable but CHC solvers do not solve them because models are
infinite formulas in the quantifier-free theory of integer lists:  

listsum(L,S)  ↦ (L=[], S=0)  (L=[X], abs(X,S))  (L=[X,Y], abs(X,A), abs(Y,B), S=A+B) … 
    listmax(L,M)  ↦ (L=[], M=0)  (L=[X], abs(X,M))   …
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Solving CHCs on inductively defined data types 
by induction

● Solution 1: Extending CHC solving with induction.
● Proof of satisfiability, by induction on list L:  

     L,S,M. listsum(L,S), listmax(L,M)  S>=M    

and hence   listsum(L,S), listmax(L,M), S<M false

● Reynolds-Kuncak: Induction for SMT solvers,  VMCAI 2015.

● Unno-Torii-Sakamoto: Automating induction for solving Horn clauses, CAV 2017.
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Solving CHCs on inductively defined data types 
by CHC transformation

● Solution 2 (this work): Transform CHCs on inductive data types into 
equisatisfiable CHCs without inductive data types (e.g., on integers 
or booleans):

● Solved by Z3, without induction. 

Solution:  list-sum-max(S,M)  S>=M, M>=0↦ 

● No infinite models are needed to show satisfiabilty

list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M), list-sum-max(S1,M1)
false ← S<M, list-sum-max(S,M)



LOPSTR 2018Frankfurt am Main, September 5th, 2018 79

Eliminating inductive data structures

● Transformations for eliminating inductive data structures: Deforestation [Wadler ‘88], 
Unnecessary Variable Elimination by Unfold/Fold [PP ‘91], Conjunctive Partial Deduction [De 
Schreye et al. ‘99]

● Define a new predicate:
list-sum-max(S,M) ← listsum(L,S), listmax(L,M)

● Unfold:
list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M), 

             listsum(Xs,S1), listmax(Xs,M1)

● Fold (eliminate lists):
list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M), 

                                          list-sum-max(S1,M1)
       

false ← S<M, list-sum-max(S,M)
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The Elimination Algorithm EC

Define new predicate(s) 
with Ind. Data Structs in the body only

Ind.
Data Structs?

P0

yesno

Fold to eliminate Ind. Data Structs

Unfold new predicate(s) 

Use Functionality (if possible)

Pn
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Termination

● Algorithm E terminates if 
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition
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A nonterminating transformation

● A property of lists

if  M=N  then  A=Xs

Xs

Ys M N Zs

A

take drop
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OCaml
Program

CHCs
w Ind.Data S

CHCs
w/o Ind.Data 

S

Translation to CHCs [RCaml, Unno & al. 2017]

Algorithm EC [VeriMAP, De Angelis & al. 2014-18]

sat/unsat/unknown

Z3 CHC solver with SPACER engine [Komuravelli & al. 2013]

Verification of OCaml Programs
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● Benchmark: 

– 70 OCaml small (but non-trivial) programs on lists/trees from RCaml 
and IsaPlanner (a proof planner for ISABELLE)

– 35 more OCaml programs (e.g., binary search trees) 

Experimental evaluation
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● Transformation is a viable alternative to induction to solve CHCs on 
data structures

● We presented transformation algorithms which are effective on small, 
non-trivial examples

Future work

– Higher-order functional programs 

– Discover and apply lemmata to eliminate inductive data structures

References

– [DFPP -  TPLP 18]

– https://fmlab.unich.it/iclp2018/ 

Comments
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Verification of time-aware
business processes
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 Business processes are ‘graphs’ for coordinating the activities of an 
organization towards a business goal.

 An example: Purchase Order . A customer adds items to the shopping cart 
and pays. Then, the vendor issues and sends the invoice, and in parallel, 
prepares and delivers the order.

   There is no information on the durations of tasks. 

Business Processes

start end

https://fmlab.unich.it/iclp2018/
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[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

Time-Aware Business Processes

 Time-Reachability: checking whether or not to go from  s  to  e  takes           less 

than k units of time.
 Controllability: finding the durations of some controllable tasks 
    so that a given time-reachability property holds.

controllable

controllable

Two problems :

 Information on the duration: Intervals:    d ∈ [dmin, dmax] ⊂ N
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Graphical notation for modeling organizational  processes. 

BPMN is a standard. 

Tasks : atomic activities

       

Events : something that happens

Gateways: either branching or merging 

Flows : order of execution (drawn as arrows)

Business Process Modeling and Notation (BPMN) 

start end

s e

task1
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Branch Gateways

 single incoming flow, multiple outgoing flows

 exclusive branch gateway  (XOR)

 upon activation of the incoming flow
exactly one outgoing flow 
is activated

 parallel branch gateway    (AND)

 upon activation of the incoming flow
all outgoing flows 
are activated
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Branch Gateways

 single incoming flow, multiple outgoing flows

 exclusive branch gateway  (XOR)

 upon activation of the incoming flow
exactly one outgoing flow 
is activated

 parallel branch gateway    (AND)

 upon activation of the incoming flow
all outgoing flows 
are activated
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Merge Gateways

 multiple incoming flows, single outgoing flow

 exclusive merge gateway   (XOR)

 the outgoing flow is activated
upon activation of 
one of the incoming flows

 parallel merge gateway    (AND)

 the outgoing flow is activated
upon activation
of all the incoming flows
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Merge Gateways

 multiple incoming flows, single outgoing flow

 exclusive merge gateway   (XOR)

 the outgoing flow is activated
upon activation of 
one of the incoming flows

 parallel merge gateway    (AND)

 the outgoing flow is activated
upon activation
of all the incoming flows
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Semantics of time-aware BPMN

 Transition relation between states:  < F,t > →  < F’,t’ >

 F : a set of fluents (i.e., a set of properties that hold at time point t)

- begins(x)         x begins its execution (enactment)

- enacting(x,r)    x is executing with r residual time to completion

- completes(x)    x completes its execution

- enables(x,y)    x enables its successor y 

                                    x, y denote either tasks, or events, or gateways

 seq(x,y)             there is an arrow from x to y

 t  : time point  (i.e., a non-negative integer)

   duration(x,d)             the duration of x is d
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Semantics of time-aware BPMN

completes(x) 
 

 

begins(x) 
 

 

enacting(x, r)  with rd

r

task(x) 

duration(x, d) d 
 x  is 

d

- durations of events and gateways are assumed to be 0
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Semantics of time-aware BPMN

Instantaneous transition:

begins(x)                                   enacting(x, d) 
 

< F,t > →  < F’,t >
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Semantics of time-aware BPMN

(S
2
) If the parallel branch x completes, 

         then all its successors s are enabled, istantaneously 
x

< F ,t > →  < F’,t >
Instantaneous transitions:



LOPSTR 2018Frankfurt am Main, September 5th, 2018 101

Semantics of time-aware BPMN

(S
2
) If the parallel branch x completes, 

         then all its successors s are enabled, istantaneously 

< F ,t > →  < F’,t >
Instantaneous transitions:

x
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Semantics of time-aware BPMN

The time-elapsing transition:

Time elapses when no istantaneous transition can occur. 

All enacting tasks proceed in parallel for a time equal to the minimum of 
all residual times.

< F,t > →  < F’,t’ >
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Weak Controllability

 Assume:

 some tasks are controllable (e.g., internal to the organization)

 some tasks are uncontrollable (e.g., external to the organization)

 Weak Controllabilty: For all durations of the uncontrollable tasks (within the 

given time intervals), we can determine durations of the controllable tasks 

(within the given time intervals), s.t. a state can be reached and a given time 

constraint is satisfied.

constraint: 3 ≤ Ttotal ≤ 7

a solution: if Dpur=1 then Dcc=Dcol=2 else Dcc=Dcol=1 

s                 
   
e

cc_charge

collect_items

purchase

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable
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Strong Controllability

   Weak Controllabilty may not be useful when some uncontrollable   

   tasks occur after controllable ones.

 Strong Controllability: We can determine durations of the controllable tasks 

(within the given time intervals) s.t., for all durations of the uncontrollable 

tasks (within the given time intervals), a state can be reached and a given time 

constraint is satisfied.
The exact duration of the delivery is not known when packaging. 

     

constraint:   4 ≤ Ttotal ≤ 7
a solution:   1 ≤ Dpack ≤ 2

packagings
  
e

[1,4]

controllable uncontrollable

[3,5]

delivery
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CHC translation

< F,t > →  < F’,t >Instantaneous transition:

begins(x)                                 enacting(x, d) 
 

where U,C are tuples of uncontrollable and controllable durations, resp.
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CHC interpreter of time-aware BPMN
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CHC translation

reach: reflexive, transitive closure of the transition relation tr

    R1:    reach(S,S,U,C) ← 

    R2:    reach(S0,S2,U,C) ← tr (S0,S1,U,C), reach(S1,S2,U,C)
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Encoding Reachability

 Reachability Property.

RP : reachProp(U,C) ← c(T,U,C),   reach(init, fin(T),U,C)

                            where c(T,U,C) is a constraint

 Initial state. init :     < {begins(start)}, 0 > 

 Final state. fin(T) :  < {completes(end)}, T >
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   Let  Sem  be the CHC encoding of semantics:
        C1-C7 (for tr) and  R1-R2 (for reach).       
   Let  LIA  be the theory of Linear Integer Arithmetics.

 Weak Controllability

Sem ∪ {RP} U LIA         ∀U. adm(U) → ∃C reachProp(U,C)

         where adm(U) iff the durations in U belong to the given intervals

 Strong Controllability

Sem ∪ {RP} U LIA         ∃C. ∀U. adm(U) → reachProp(U,C)

Encoding Controllability

⊨ 

⊨ 
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Verifying controllability

 Validity of Weak and Strong Controllabilities: 

 cannot be proved by CHC solvers over LIA (e.g., Z3), because of the complex 
terms (such as those denoting sets) and the findall predicate in Sem

 cannot be proved by CLP systems, because of ∃∀ and ∀∃

 solvers and CLP systems have termination problems due to recursive reach.

●  We developed special purpose algorithms for solving weak and strong controllability.

     Reduce solving  of ∃∀ and ∀∃  with recursive clauses to 

–  computing answers to queries

–  solving a set of quantified LIA contraints 
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Experimental evaluation

 Different tools have been used:

● VeriMAP for generating CHC

● SICStus Prolog: Computation of answer constraints

● Z3: SMT solver for checking quantified LIA formulas

Experimentation on various examples:

 Purchase order [DFMPP 2016]

 Request Day-Off Approval [Huai et al. 2010]

 STEMI: Emergency Department Admission [Combi et al. 2009]

 STEMI: Emergency Department + Coronary Care Unit Admission [Combi et al. 

2012]
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Comments

 Controllability was introduced in various contexts          
 [Vidal-Fargier 1999,  Combi-Posenato 2009,  Cimatti et al. 2015,  

        Zavatteri et al. 2017]

 Future work
 Larger fragment of BPMN:   timers, interrupting events, ...
 Data [Montali et al. 2013, Deutsch 2014, ...] 
 Ontologies for tasks, …

 References

– [DFMPP – LOPSTR 16]    [DFMPP – RuleML+RR  17]

– http://map.uniroma2.it/lopstr16/ 
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Final comments

 We presented a flexible framework for CHC verification

 parametric with respect to the semantics and the property

 use of satisfiability-preserving and solvability-preserving 
CHC transformations

 can improve precision state-of-the-art CHC solvers

 Future work
– Make it more usable (better interface, web interface)
– Make it more extensible (define API, hooks, … )
– Integrate external libraries and tools

 You are welcome to use it for your verification tasks.  
– We would be happy to help you!
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Thank you
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Multi-Step Operational Semantics

Encoding the Operational Semantics

function call      x=f(e1,...,en);                          “return” case

   

tr(cf(cmd(L,asgn(X,call(F,Es))), (D,S)),                 source configuration
    cf(cmd(L2,C2),                      (D2,S2)))     target configuration

←
      eval_list(Es,D,S,Vs),              evaluate function parameters
      build_funenv(F,Vs,FEnv),       build function environment
      firstlab(F,FL),  at(FL,C),          first label and command function def
      reach( cf(cmd(FL,C),           (D,FEnv)),           function execution
                 cf(cmd(LR,return(E)),(D1,S1))),           return
      eval(E,(D1,S1),V),                   evaluate returned expression
      update((D1,S),X,V,(D2,S2)),   update caller environment
      nextlab(L,L2), at(L2,C2)         next label and command
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VCs  Multi-Step Semantics

VCs generated by using the multi-step semantics

● Non linear recursive: multiple atoms in the body 

● Predicate arity is even (variables for source and target 
configurations)

false ←  X>=1,Y>=1,X1=< -1, new3(X,Y, X1,Y1)
new3(X,Y, X1,Y1) ← X+1=<Y, new4(X,Y, X1,Y1)         loop execution
new3(X,Y, X1,Y1) ← X>=Y+1, new4(X,Y, X1,Y1)         loop execution
new3(X,Y, X,Y) ← X=Y                                                   loop exit
new4(X,Y, X3,Y3) ← X>=Y+1, A=X, B=Y, X2=R1,         then branch
                               new6(X,Y,A,B,R,  X1,Y1,A1,B1,R1), 
                               new3(X2,Y1, X3,Y3) 
new4(X,Y, X3,Y3) ← X=<Y,     A=Y, B=X, Y2=R1,          else branch
                                 new6(X,Y,A,B,R,  X1,Y1,A1,B1,R1),
                                 new3(X1,Y2, X3,Y3) 
new6(X,Y,A,B,R,  X,Y,A,B,R1) ← R1=A-B                    sub  function call
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Small-Step Semantics

● Keep a stack of activation frames

● Function call: push an element on top of the stack 

tr(cf(cmd(L,asgn(X,call(F,Es))),D,T), 
        cf(cmd(FL,C),                         D,[frame(L1,X,Fenv)|T]))    ←

nextlab(L,L1), 
              loc_env(T,S),  eval_list(Es,D,S,Vs), 
              build_funenv(F,Vs,FEnv), 
              firstlab(F,FL), at(FL,C).

L1          label where to jump after returning
X            value returned by the function call
FEnv     local environment used during the execution of the function call

● Function return:  pop an element from the stack

tr(cf(cmd(L,return(E)),D,  [frame(L1,X,S) |T]), 
    cf(cmd(L1,C),           D1,T1))                                   ←
               eval(E,D,S,V),
               update((D,T),X,V,(D1,T1)), 
               at(L1,C).
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Small-Step Semantics

● Encoding correctness when using the Small-Step semantics

    false ← initConf(C), reach(C). 
    reach(C) ← tr(C,C1), reach(C1). 
    reach(C) ← finalConf(C).

● VCs generated by using the Small-Step semantics 

● Linear recursive  (at most one atom in the body)

● More predicates and clauses than in Multi-Step semantics VCs 
Multiple predicates for the calls to the  sub function (e.g. new11 and 
new8)

● Half the variables  w.r.t. MS semantics VCs

false ← X>=1, Y>=1, new3(X,Y).
new3(X,Y) ← X=<-1, Y=X.
new3(X,Y) ← X+1=<Y, new4(X,Y).
new3(X,Y) ← X>=1+Y, new4(X,Y).
new4(X,Y) ← X>=Y+1, new6(X,Y).
new4(X,Y) ← X=<Y, new7(X,Y).

new6(X,Y) ← A=X, B=Y, new11(X,Y,A,B,R).
new7(X,Y) ← A=Y, B=X, new8(X,Y,A,B,R).
new8(X,Y,A,B,R) ← R1=A-B, new9(X,Y,A,B,R1). 
new9(X,Y,A,B,R) ← Y1=R, new3(X,Y1).
new11(X,Y,A,B,R) ← R1=A-B, new12(X,Y,A,B,R1). 
new12(X,Y,A,B,R) ← X1=R, new3(X1,Y).
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Termination: No sharing cycles

● Algorithm E terminates if 
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

No multiple occurrences of the same variable in each atom (wlog)

labeled (multi)graph: the nodes are the atoms of the query and there is an 
edge between two atoms, labeled by variable X,  iff they share X

sharing cycle: path from an atom to itself labeled by distinct variables

T

U
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Termination: Quasi-descending

● Algorithm E terminates if 
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

Slice: take one “inductive” argument for each predicate

Quasi-descending: body arguments are (possibly 
non-strict) subterms of head arguments
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Termination: Disjoint slices

● Algorithm E terminates if 
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

Disjoint: no variable is shared between two 
slices of the same clause

http://map.uniroma2.it/lopstr16/
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● A property of lists

if  M=N  then  A=Xs

Xs

Ys M N Zs

A

take drop

The query has a sharing cycle

A nonterminating transformation
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● Define new predicates with constraints in LIA or Bool

– use widening operators [Cousot-Halbwachs ‘77, Bagnara et al. 
‘08]

● EC guarantees equisatisfiability

● If E terminates, then EC terminates

The Elimination Algorithm EC
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   (1) Generate a disjunction a(U,C) of constraints

   (2) Check whether or not   LIA     ∀U. adm(U) → ∃C. a(U,C)

Assume a sound and complete LIA-constraint solver: SOLVE.                   
For any set ISP of clauses and query Q:  c, A1,…,An                                      where c 
is a LIA constraint,

    SOLVE(ISP ,Q) returns

 a satisfiable constraint a s.t. ISP  U LIA      ∀(a → Q),   if any,

 false, otherwise 

In particular, if SOLVE(ISP , reachProp(U,C)) = a(U,C), then

                           ISP  U LIA      ∀U,C. (a(U,C) → reachProp(U,C))

 
CS&P 2017 - Warsaw (Poland)

(4)  Weak Controllability Algorithm

⊨ 

⊨ 

⊨ 



     ISP :    q(X) ← r(X)

               r(X) ← X>0

    SOLVE(ISP , q(X))  returns the constraint  X>0

                           Indeed, ISP U LIA        ∀X  (X>0 → q(X))

(4)  Weak Controllability Algorithm

⊨ 



CS&P 2017 - Warsaw (Poland)

(4)  Weak Controllability Algorithm

a(U,C) := false;
do {

Q := (reachProp(U,C)  ∀C. a(U,C));

if (SOLVE(I
SP

, Q) = false)  return  false;

a(U,C) := a(U,C) ∨ SOLVE(I
SP

,Q);

} while (LIA             ∀U. adm(U) → ∃C. a(U,C))  ;

return a(U,C);
⊨ 
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