
Frankfurt am Main, September 5th, 2018 LOPSTR 2018 1

The VeriMAP system for
program transformation

and verification

Fabio Fioravanti
University of Chieti-Pescara, Italy

joint work with Emanuele De Angelis, Maria Chiara Meo,
Alberto Pettorossi and Maurizio Proietti

LOPSTR 2018Frankfurt am Main, September 5th, 2018 2

Outline

● Constrained Horn Clauses (CHC) for verification

● CHC transformation rules and strategies

● Semantics-based translation to CHC

● CHC specialization as CHC solving

● Verification of relational properties
(e.g. equivalence, functionality, non-interference)

● Verification of programs with
inductively-defined data structures (e.g., lists and trees)

● Verification of time-aware business processes

● VeriMAP demo

LOPSTR 2018Frankfurt am Main, September 5th, 2018 3

● Constrained Horn Clauses (aka Constraint Logic Programs):
A

0
 ← c, A

1
, … , A

n

where: (1) A0 is false or an atom, (2) A1, …, An, n≥0, are atoms, and
(3) c is a constraint in a first order theory Th.
All variables are assumed to be universally quantified in front

Many verification problems can be encoded as CHC satisfiability

● Satisfiability: Given a set P of CHC, has P ∪ Th a model?

● Solving: Compute a model of P ∪ Th, expressed in Th (if sat) or return
unsat; solvability implies satisfiability, not vice versa

● CHC solvers: SMT solvers for the Horn fragment with Linear Integer/Real
Arithmetic, Booleans, Arrays, Lists, Bit-vectors
(e.g., Z3 (SPACER), Eldarica, HSF, MathSAT, Hoice, RAHFT/PECOS, VeriMAP, …)

● CHC tools: Ciao, SeaHorn, ...

Constrained Horn Clauses (CHC)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 4

Imperative program verification via CHC solving

Specification
{n>=0} x=0; y=0; while (x<n) { x=x+1; y=x+y} {y>=x}

Constrained Horn Clauses
p(X, Y, N) ← N>=0, X=0, Y=0 %Init
p(X1, Y1, N) ← X<N, X1=X+1, Y1=X1+Y, p(X, Y, N) %Loop
false ← X>=N, Y<X, p(X, Y, N) %Exit

Translation

● Summing the first n integers

● Solution (i.e., model) of the CHCs:

● CHC are solvable, hence satisfiable, and the specification is valid

p(X, Y, N) ↦ X>=0, Y>=X

LOPSTR 2018Frankfurt am Main, September 5th, 2018 5

CHC transformation for verification

● CHC transformations

– propagate constraints (backward and forward)

● Unfolding and constraint solving

– discover inductive invariants (also using widening & convex-hull)

● Definition and folding

– discover relations among predicates

● CHC transformations

– preserve satisfiability

– preserve solvability, and can improve it

– can improve the effectiveness of state-of-the-art CHC solvers

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 6

CHC transformation rules and strategies

LOPSTR 2018Frankfurt am Main, September 5th, 2018 7

Transformations of Functional and Logic Programs

• Each rule application preserves the semantics:
M(P0) = M(P1) = ∙∙∙= M(Pn)

• The application of the rules is guided by a strategy that guarantees that Pn is more
efficient than P0.

Initial program Final programP0  P1  ∙∙∙ Pn

where '' is an application of a transformation rule.

Transformation techniques introduced for improving functional and logic programs
[Burstall-Darlington 1977, Tamaki-Sato 1984] can be adapted to ease satisfiability
proofs for CHCs.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 8

Transformation Rules for CHCs

Initial clauses Final clausesS0  S1  ∙∙∙ Sn

where '' is an application of a transformation rule.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 9

Transformation Rules for CHCs

R1. Definition. Introduce a new predicate definition
introduce C: newp(X) :- c, G

Si+1 = Si  {C} Defs := Defs  {C}

9

Initial clauses Final clausesS0  S1  ∙∙∙ Sn

where '' is an application of a transformation rule.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 10

R1. Definition. Introduce a new predicate definition
introduce C: newp(X) :- c, G

Si+1 = Si  {C} Defs := Defs  {C}

R2. Unfolding. Apply a Resolution step

given C: H :- c,A,G A :- d1,G1 ... A :- dm,Gm in Si

derive S = { H :- c,d1,G1,G ... H :- c,dm,Gm,G }

Si+1 = (Si - {C})  S

Initial clauses Final clausesS0  S1  ∙∙∙ Sn

where '' is an application of a transformation rule.

Transformation Rules for CHCs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 11

R3. Folding. Replace a conjunction with a new predicate

given C: H :- d,B,G in Si newp(X) :- c,B. with dc in Defs

derive D: H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

Transformation Rules for CHCs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 12

R3. Folding. Replace a conjunction with a new predicate

given C: H :- d,B,G in Si newp(X) :- c,B. with Th ⊨ dc in Defs

derive D: H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C: H :- c,B,G in Si with Th ⊨ c  d

derive D: H :- d,B,G
Si+1 = (Si - {C})  {D}

Transformation Rules for CHCs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 13

R3. Folding. Replace a conjunction with a new predicate

given C: H :- d,B,G in Si newp(X) :- c,B. with Th ⊨ dc in Defs

derive D: H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C: H :- c,B,G in Si with Th ⊨ c  d

derive D: H :- d,B,G
Si+1 = (Si - {C})  {D}

R5. Clause Removal. Remove a clause C with unsatisfiable constraint or subsumed by
another
Si+1 = (Si - {C})

Transformation Rules for CHCs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 14

R3. Folding. Replace a conjunction with a new predicate

given C: H :- d,B,G in Si newp(X) :- c,B. with Th ⊨ dc in Defs

derive D: H :- d,newp(X),G.

Si+1 = (Si - {C})  {D}

R4. Constraint replacement. Replace a constraint with an equivalent one
given C: H :- c,B,G in Si with Th ⊨ c  d

derive D: H :- d,B,G
Si+1 = (Si - {C})  {D}

R5. Clause Removal. Remove a clause C with unsatisfiable constraint or subsumed by
another
Si+1 = (Si - {C})

Theorem [Tamaki-Sato 84,Etalle-Gabbrielli 96]: If every new definition is unfolded at least once
in S0  S1  ∙∙∙ Sn then

S0 satisfiable iff Sn satisfiable

Transformation Rules for CHCs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 15

• Transformation rules need to be guided by suitable strategies.

• Main idea: exploit some knowledge about the query to produce a customized,
easier to verify set of clauses.

• Specialization [Gallagher,Leuschel,FPP,…]: Given a set of clauses S and a query
 false :- c,A, where A is atomic, transform S into a set of clauses SSP such that

S  {false :- c,A} satisfiable iff SSP  {false :- c,A} satisfiable.

• Predicate Tupling (also known as Conjunctive Partial Deduction) [PP, Leuschel,…]: Given
a set of clauses S and a query false :- c,G, where G is a (non-atomic) conjunction,
introduce a new predicate newp(X) :- G and transform set of clauses ST such that

S  {false :- c,G} satisfiable iff ST  {false :- c,newp(X)} satisfiable.

Transformation strategies

LOPSTR 2018Frankfurt am Main, September 5th, 2018 16

Specialization Strategy: An Example

false :- X<0, p(X,b). % X. p(X,b)  X>=0 S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X). % the X-th Turing machine halts on X

LOPSTR 2018Frankfurt am Main, September 5th, 2018 17

Specialization Strategy: An Example

false :- X<0, p(X,b). % X. p(X,b)  X>=0 S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X). % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b). % q(X) is a specialization of p(X,C) S1

 % to a specific constraint on X and value of C

LOPSTR 2018Frankfurt am Main, September 5th, 2018 18

Specialization Strategy: An Example

false :- X<0, p(X,b). % X. p(X,b)  X>=0 S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X). % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b). % q(X) is a specialization of p(X,C) S1

 % to a specific constraint on X and value of C

Unfold: q(X) :- X<0, X=Y+1, p(Y,b). S2

q(X) :- X<0, X>=0, tm_halts(X). % clause removal

LOPSTR 2018Frankfurt am Main, September 5th, 2018 19

Specialization Strategy: An Example

false :- X<0, p(X,b). % X. p(X,b)  X>=0 S0

p(X,C) :- X=Y+1, p(Y,C).

p(X,a).

p(X,b) :- X>=0, tm_halts(X). % the X-th Turing machine halts on X

Define: q(X) :- X<0, p(X,b). % q(X) is a specialization of p(X,C) S1

 % to a specific constraint on X and value of C

Unfold: q(X) :- X<0, X=Y+1, p(Y,b). S2

q(X) :- X<0, X>=0, tm_halts(X). % clause removal

Fold: false :- X<0, q(X).

q(X) :- X<0, X=Y+1, q(Y). S3

Satisfiability of S3 is easy to check: q(X)  false makes all clauses true (no facts for q)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 22

A Generic U/F Transformation Strategy

Define

Unfold

Replace
Constraints

Remove
Clauses

 Fold?

S0

Sn

no

yes

LOPSTR 2018Frankfurt am Main, September 5th, 2018 23

Some Issues About the U/F Strategy

• Unfolding: Which atoms should be unfolded? When to stop?

• Constraint replacement: A suitable constraint reasoner is needed

• Definition: Suitable new predicates need to be introduced to guarantee
termination and effectiveness of strategy

– Definitions are arranged in a tree

– New definitions possibly contain a generalized constraint

● newp :- d, B ancestor definition

● newp :- c, B candidate definition

● newp :- g, B generalized definition c → g=gen(c,d)

– Generalization operators based on widening and convex-hull
[Cousot-Cousot 77, Cousot-Halbwachs 78, Bagnara et al. 08]

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 24

Semantics-based translation to CHC

Verification Conditions

LOPSTR 2018Frankfurt am Main, September 5th, 2018 25

CHC Specialization as a Verification Condition Generator

CHC Specializer

Program P in L

InterpL

Property F

L: Programming language

InterpL: CHC interpreter for L

VC: Verification Conditions, i.e.,
a set of CHCs independent of L

VC

F holds for P iff VC is satisfiable

The CHC specializer is parametric with respect to the programming language L and
the class of properties.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 26

● C-like imperative language with assignments, conditionals, jumps.
While-loops translated to conditionals and jumps.

● Commands encoded as atomic assertions: at(Label, Cmd).

Translating Imperative Programs into CHC

x=0;
y=0;
while (x<n) {
 x=x+1;
 y=x+y
}

0. x=0;
1. y=0;
2. if (x<n) 3 else 6;
3. x=x+1;
4. y=x+y;
5. goto 2;
h. halt

at(0,asgn(int(x), int(0))).
at(1,asgn(int(y), int(0))).
at(2, ite(less(int(x), int(n)), 3, 6)).
at(3, asgn(int(x), plus(int(x), int(1)))).
at(4, asgn(int(y), plus(int(x), int(y)))).
at(5, goto(2)).
at(h, halt).

LOPSTR 2018Frankfurt am Main, September 5th, 2018 27

A Small-Step Operational Semantics

• The operational semantics is a one-step transition relation between configurations

<n:cmd, env>  <n’:cmd’, env’>

where: n:cmd is a labelled command
 env is an environment mapping variable identifiers to values

• Assignment

<n: x=e, env>  <next(n), update(env, x, [e]env)>

next(n) is the next labelled command
update(env, x, [e]env) updates the value of x to the value of expression e in env

• Conditional

<n: if (e) n1 else n2, env>  <at(n1), env> if [e]env≠0
<n: if (e) n1 else n2, env>  <at(n2), env> if [e]env=0

 at(n) is the labelled command with label n

• Jump
 <n: goto n1, env>  <at(n1), env>

LOPSTR 2018Frankfurt am Main, September 5th, 2018 28

A CHC Interpreter for the Small-Step Semantics

● Configurations: cf(LC, Env)

where:

- LC is a labelled command represented as a term of the form cmd(L,C),

 L is a label, C is a command

- Env is an environment represented as a list of (variable-id,value) pairs:

 [(x,X),(y,Y),(z,Z)]

● One-step transition relation between configurations:

tr(cf(LC1,Env1), cf(LC2,Env2))

LOPSTR 2018Frankfurt am Main, September 5th, 2018 29

assignment x=e;

tr(cf(cmd(L, asgn(X,E)), Env1), cf(cmd(L1, C), Env2)) :-
nextlab(L,L1), % next label
at(L1,C), % next command
eval(E,Env1,V), % evaluate expression
update(Env1,X,V,Env2). % update environment

More clauses for predicate tr to encode the semantics of the other commands.

CHC Interpreter (Asgn)

target configurationsource configuration

LOPSTR 2018Frankfurt am Main, September 5th, 2018 30

Encoding Partial Correctness Properties

• Partial correctness specification (Hoare triple):

{ϕ} prog {ψ}

If the initial values of the program variables satisfy the precondition ϕ and prog
terminates, then the final values of the program variables satisfy the postcondition ψ.

• CHC encoding of partial correctness:

• {ϕ} prog {ψ} is valid iff PC-prop is satisfiable.

false :- initConf(Cf), errReach(Cf).
errReach(Cf) :- errorConf(Cf). PC property
errReach(Cf) :- tr(Cf,Cf2), errReach(Cf2).
initConf(cf(C, Env)) :- at(0,C), ϕ(Env). Initial configuration
errorConf(cf(C, Env)) :- at(h,C), ¬ψ(Env). Error configuration
tr(Cf1,Cf2) :- … InterpL

PC-prop

LOPSTR 2018Frankfurt am Main, September 5th, 2018 31

Problems of direct CHC encoding

● PC-prop includes a lot of complex structures and predicates:

– complex terms encoding configurations:

cf(cmd(L,asgn(X,Expr)),[(x,1),(y,0),(a,[2,3,4])])

– recursive predicates over lists encoding functions on the environment:

 update([(X,N)|Bs],X,V,[(X,V)|Cs]) :- …. update(Bs,X,V,Cs)

● State-of-the-art CHC solvers hardly terminate when checking the satisfiability of
PC-prop

LOPSTR 2018Frankfurt am Main, September 5th, 2018 32

VCGen: Generating Verification Conditions

VCGen is a transformation strategy that specializes PC-prop to a given
 {ϕ} prog {ψ},
removes explicit reference to the interpreter (function cf, predicates at, tr, etc.).

● All new definitions are of the form newp(X) :- errReach(cf(LC,Env)), corresponding to a
program point.

– Limited reasoning about constraints at specialization time (satisfiability only).

● VCGen is parametric wrt InterpL (to a large extent).

● If PC-prop VC then PC-prop is satisfiable iff VC is satisfiable

– no complex terms or lists occur in VC

VCGen

LOPSTR 2018Frankfurt am Main, September 5th, 2018 33

Generating Verification Conditions: An Example

false :- initConf(Cf), errReach(Cf). PC-prop
errReach(Cf) :- errorConf(Cf).
errReach(Cf1) :- tr(Cf1,Cf2), errReach(Cf2).
initConf(cf(C, [(x,X),(y,Y),(n,N)])) :- at(0,C), N>=1.
errorConf(cf(C, [(x,X),(y,Y),(n,N)])) :- at(h,C), YX.
tr(Cf1,Cf2) :- …
…
at(0,asgn(int(x), int(0))).
…

{n>=1} SumUpto {y>x}

false :- N>=1, X=0, Y=0, p(X, Y, N). VC
p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, YX.

CHC encoding:

PC property:

Verification
Conditions:

VCGen

LOPSTR 2018Frankfurt am Main, September 5th, 2018 34

Two semantics for function calls

● Small-Step semantics (SS)

– “dives into” the function definition

– VC are linear clauses (one atom in the body)

● Multi-Step semantics (MS)

– “wraps” the whole function call is defined in terms of ⇒ is defined in terms of ⇒ ⇒ is defined in terms of ⇒∗

– VC are non-linear

– reach(C,C).
reach(C,C2) :- tr(C,C1), reach(C1,C2).

false :- initConf(C1), reach(C1,C2), errorConf(C2).

● more variables (use variants of Leuschel’s Redundant Argument Filtering)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 35

Properties of VCGen

● The number of transformation steps is linear wrt the size of
the imperative program P

● The size of VC (the number of CHC) is linear wrt the size of
program P

LOPSTR 2018Frankfurt am Main, September 5th, 2018 36

Short demo

LOPSTR 2018Frankfurt am Main, September 5th, 2018 37

Experimental evaluation

● Other semantics: exceptions, etc.

● Checking the satisfiability of the VCs using QARMC, Z3 (PDR), MathSAT (IC3),
Eldarica

● VCGen+QARMC compares favorably to HSF+QARMC

LOPSTR 2018Frankfurt am Main, September 5th, 2018 38

Comments

● Semantics-based Verification Condition generation is efficient and flexible

● Experiments with C, BPMN (business processes), Erlang (ongoing)

● Future work

– More language semantics

● Use formal semantics specifications of the K-Framework [Rosu et al.]
ANSI C, OCaml, Python, PHP, Java, Javascript, Ethereum Virtual Machine…

– Make it accessible to third parties

● improve documentation

● References

– [DFPP - PPDP 15], [DFPP-ScienceCompProgr 16]

– http://map.uniroma2.it/VeriMAP

– http://map.uniroma2.it/vcgen

LOPSTR 2018Frankfurt am Main, September 5th, 2018 39

Short demo

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 40

CHC Specialization as CHC Solving

http://map.uniroma2.it/VeriMAP
http://map.uniroma2.it/vcgen

LOPSTR 2018Frankfurt am Main, September 5th, 2018 41

VCTransf: Specializing Verification Conditions

Define

Unfold

Replace
Constraints

Remove
Clauses

 Fold?

VC

VC’

newp(X) :- c, p(X)

false :- c, p(X)

apply theory of constraints

VC is satisfiable iff VC’ is satisfiable

Specializing verification
conditions by propagating
constraints.

Introduction of new
predicates by generalization
(e.g., widening and convex
hull techniques)

no

yes

LOPSTR 2018Frankfurt am Main, September 5th, 2018 42

VCTransf as CHC Solving

The effect of applying VCTransf can be:

1. A set VC’ of verification conditions without constrained facts for the predicates on which
the queries depend (i.e., no clauses of the form p(X) :- c).
VC’ is satisfiable.

2. A set VC’ of verification conditions including false :- true.
VC’ is unsatisfiable.

3. Neither 1 nor 2 (constrained facts of the form p(X) :- c, but not false :- true).
Satisfiability is unknown.

false :- X<0, q(X). VC’
q(X) :- X<0, X=Y+1, q(Y).

false :- X<0, p(X,b). VC
p(X,C) :- X=Y+1, p(Y,C).
p(X,a).
p(X,b) :- X0, tm_halts(X). No constrained facts: VC’ satisfiable

VCTransf

propagation of constraint X<0 and constant b

LOPSTR 2018Frankfurt am Main, September 5th, 2018 43

Iterated CHC Specialization

● If the satisfiability of VC’ is unknown VCTransf can be iterated.

● Between two applications of VCTransf we can apply the Reversal transformation
(particular case of the query-answer transformation [KafleGallagher 15] for linear
programs) that interchanges premises and conclusions of clauses (backward reasoning
from queries simulates forward reasoning from facts).

false :- a(X), p(X). VC
p(X) :- c(X,Y), p(Y).
p(X) :- b(X).

p(X) :- a(X). VC’
p(Y) :- c(X,Y), p(X).
false :- b(X), p(X).

Reversal

VC is satisfiable iff VC’ is satisfiable

VCTransf Reversal VCTransf VCTransf
VC0 VC1 VC2 VC3 ∙∙∙ VCn

LOPSTR 2018Frankfurt am Main, September 5th, 2018 44

Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 45

Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X.

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

VCTransf

LOPSTR 2018Frankfurt am Main, September 5th, 2018 46

Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X.

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

new2(X1, Y1, N) :- N>=1, X1=1, Y1=1. VC2

new3(X1, Y1, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new2(X, Y, N).
new3(X1, Y1, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X, Y, N).
false :- N>=1, Y>=1, X>=N, Y<X, new3(X, Y, N).

VCTransf

Reversal

LOPSTR 2018Frankfurt am Main, September 5th, 2018 47

Iterated CHC Specialization: SumUpto Example

false :- N>=1, X=0, Y=0, p(X, Y, N). VC0

p(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, p(X1, Y1, N).
p(X, Y, N) :- X>=N, Y<X.

false :- N>=1, X1=1, Y1=1, new2(X1, Y1, N). VC1

new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).
new3(X, Y, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
new3(X, Y, N) :- Y>=1, N>=1, X>=N, Y<X.

new2(X1, Y1, N) :- N>=1, X1=1, Y1=1. VC2

new3(X1, Y1, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new2(X, Y, N).
new3(X1, Y1, N) :- X1>=1, Y1>=X1, X<N, X1=X+1, Y1=X1+Y, new3(X, Y, N).
false :- N>=1, Y>=1, X>=N, Y<X, new3(X, Y, N).

false :- N>=1, Y>=1, X>=N, Y<X, new4(X, Y, N). VC3

VCTransf

VCTransf

Reversal

No constrained facts. VC3 is satisfiable

LOPSTR 2018Frankfurt am Main, September 5th, 2018 48

 VeriMAP architecture

LOPSTR 2018Frankfurt am Main, September 5th, 2018 49

Short demo

LOPSTR 2018Frankfurt am Main, September 5th, 2018 50

Experimental evaluation

LOPSTR 2018Frankfurt am Main, September 5th, 2018 51

Array constraints

● if a[i] = v then read(A,I,V) holds
● if a[i] := v then write(A,I,V,B) holds, that is

B is an array identical to A
except that B has value V in position I

● Constraint Handling Rules [Frühwirth et al.] for constraint reasoning

Array-Congruence-1: if i=j then a[i]=a[j]

read(A,I,X) \ read(A1,J,Y) A=A1,I=J | X=Y.⇔ A=A1,I=J | X=Y.
Array-Congruence-2: if a[i <>a[j] then <>j] i

read(A,I,X),read(A1,J,Y) A=A1, X<>Y | I<>J.⇒ is defined in terms of ⇒
Read-Over-Write: {a[i]=x; y=a[j]} if i=j then x=y

write(A,I,X,A1) \ read(A2,J,Y) A1==A2 | (I=J,X=Y) ; (I<>J,⇔ A=A1,I=J | X=Y. read(A,J,Y)).

LOPSTR 2018Frankfurt am Main, September 5th, 2018 52

Array constraint generalization

● Logic variables are decorated with identifiers of the imperative program

LOPSTR 2018Frankfurt am Main, September 5th, 2018 53

Experimental evaluation

References
● [DFPP – Fundamenta Informaticae 2017]
● http://map.uniroma2.it/smc/array-chr/

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 54

Verification of relational properties

LOPSTR 2018Frankfurt am Main, September 5th, 2018 55

Relational Properties

• Proving relations between fragments of program versions (e.g., equivalence)
may be easier than proving the correctness of the new version from scratch.

• … proving relations between executions of the same program with different
input

• Stepwise program development

Optimization

Refactoring

New features

… …

http://map.uniroma2.it/smc/array-chr/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 56

An Example

z2 = x2 y2*

• Relational property
if x1=x2 and x2y2 before execution of sum_upto and prod
and execution terminates, then z1z2

(Non-tail) recursive Iterative

z1 = ∑ n1
n1=0

x1
= x1*(x1+1)/2

LOPSTR 2018Frankfurt am Main, September 5th, 2018 57

Verification of Relational Properties

• State-of-the-art verification methods for relational properties are
specific for the given programming language PL and class of
properties RL [Benton 2004, Barthe et al. 2011, Felsing et al. 2014]

Verifier for PL and RL

P1, P2: programs in programming language PL
rel: property in logic RL

P1 rel P2 true

false

unable to verify

LOPSTR 2018Frankfurt am Main, September 5th, 2018 58

Verification through Horn Clause
Transformation

CHC as a meta-language for programs, properties, and semantics.

Translator to CHC
P1 rel P2

Semantics of PL
and RL (in CHC)

CHC Solver
(Eldarica, Z3, …)

Transformer of CHC

Parametric w.r.t. PL and RL.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 59

Relational properties

• Terminating computation

P, env0  envh iff <l0:c0, env0> * <lh:halt, envh >

• Relational Property P1, P2 programs with disjoint variables, , constraints

 {} P1  P2 {}

is valid iff for all disjoint environments env01 and env02

if ⊨ [env01  env02], P1, env01  envh1, P2, env02  envh2

then ⊨ [envh1  envh2]

LOPSTR 2018Frankfurt am Main, September 5th, 2018 60

Example, cont’d

z1 = ∑ n1
n1=0

x1
z2 = x2 y2*

Relational Property:
{x1=x2  x2y2} sum_upto  prod {z1z2}

(Non-tail) recursive Iterative

= x1*(x1+1)/2

LOPSTR 2018Frankfurt am Main, September 5th, 2018 61

Encoding the Transition Semantics in CHCs

• Reflexive-transitive closure * :

reach(C,C) 

reach(C,C2)  tr(C,C1), reach(C1,C2)

• Terminating computation P, env0 envh [input/output relation of P]:

p(X,X’)  initConf(C,X), reach(C,C’), finalConf(C’,X’)

– initConf(C,X): X is the value of the variables in the initial configuration C

– finalConf(C’,X’): X’ is the value of the variables in the final configuration C’

LOPSTR 2018Frankfurt am Main, September 5th, 2018 62

Translating Relational Properties into CHCs

• {} P1  P2 {}

Prop: false  pre(X,Y), p1(X,X’), p2(Y,Y’), neg_post(X’,Y’)

X,Y,X’,Y’: tuples of values for the variables of P1, P2, resp.

• TProp = {Prop}  {clauses for p1 and p2}

Correctness of Translation:

{} P1  P2 {} is valid iff TProp is satisfiable

• Example: false  X1=X2, X2Y2, Z1’>Z2’,

 sum_upto(X1,Z1,X1’,Z1’), prod(X2,Y2,Z2,X2’,Y2’,Z2’)

 P1 P2





LOPSTR 2018Frankfurt am Main, September 5th, 2018 63

Example Cont’d: CHC Specialization

false  X1=X2, X2Y2, Z1’>Z2’, su(X1,Z1’), pr(X2,Y2,Z2’)
su(X,Z)  f(X,Z)
f(N,Z)  N 0, Z=0
f(N,Z)  N1, N1=N−1, Z=R+N, f(N1,R)
pr(X,Y,Z)  W=0, g(X,Y,W,Z)
g(N,P,R,R)  N 0
g(N,P,R,R2)  N1, N1=N−1, R1=P+R, g(N1,P,R1,R2)

false  X1=X2, X2Y2, Z1’>Z2’,
sum_upto(X1,Z1,X1’,Z1’), prod(X2,Y2,Z2,X2’,Y2’,Z2’)

+ clauses for sum_upto and prod

CHC Specializer
Specialized predicates

LOPSTR 2018Frankfurt am Main, September 5th, 2018 64

Limitations of the Specialized CHCs

• To show the satisfiability of

false  c(X,Y), p1(X), p2(Y)

a CHC solver looks for c1(X), c2(Y) such that in TSP  Th:

p1(X)  c1(X)

p2(Y)  c2(Y)

c1(X), c2(Y), c(X,Y)  false

• To show the satisfiability of

false  X1=X2, X2Y2, Z1’>Z2’, su(X1,Z1’), pr(X2,Y2,Z2’)

 a CHC solver has to show that:

su(X1,Z1’)  Z1’ 1+ … + X1

pr(X2,Y2,Z2’)  Z2’ >=  X2Y2

Z1’ 1+ … + X1, Z2’ >=X2Y2, X1=X2, X2Y2, Z1’>Z2’  false

• Impossible for CHC solvers over LIA!
Nonlinear constraints cannot be derived.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 65

false  X1=X2, X2Y2, Z1’>Z2’,
su(X1,Z1’), pr(X2,Y2,Z2’)

su(X,Z)  f(X,Z)
f(N,Z)  N 0, Z=0
f(N,Z)  N1, N1=N−1, Z=R+N, f(N1,R)
pr(X,Y,Z)  W=0, g(X,Y,W,Z)
g(N,P,R,R)  N 0
g(N,P,R,R2) 

N1, N1=N−1, R1=P+R,
g(N1,P,R1,R2)

Example Cont’d: Predicate Pairing

false  N Y, W=0, Z1’>Z2’,
fg(N,Z1’,Y,W,Z2’)

fg(N,Z1’,Y,Z2’,Z2’)  N 0, Z1’=0
fg(N,Z1’, Y,W,Z2’) 

N>1, N1=N−1, Z1’=R+N, M=Y+W,
fg(N1,R,Y,M,Z2’)

Predicate Pairing

• fg(N,Z1’,Y,0,Z2’)  N>Y  Z1’ Z2’
(N>Y  Z1’ Z2’)  N Y  W=0  Z1’>Z2’  false

• Non-linear arithmetic relations not needed for proving satisfiability.
CHC solvers over LIA (Eldarica, Z3) can prove satisfiability.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 66

Inferring Inter-Predicate Relations
via Predicate Pairing

Predicate Pairing
false  c(X,Y), p1(X), p2(Y) false  c(X,Y), p12(X,Y)

• To prove satisfiability find constraint d(X,Y) such that:

p12(X,Y)  d(X,Y)
d(X,Y), c(X,Y)  false

• Introduce new predicates standing for conjunctions:

• d(X,Y) captures relations between the variables of p1 and the variables of p2.

• Predicate pairing derives new clauses for conjunctions of predicates by
unfold/fold transformations and preserves satisfiability.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 67

Properties of the CHC transformation rules

• CHC transformation rules preserve satisfiability
 [Tamaki-Sato 84,Etalle-Gabbrielli 96]

• Theorem [DFPP 17]
Let A be a subset of the constraints of Th.
Let P → … → Q be a transformation sequence

if P has an A-definable model then Q has an A-definable model

• Thus, CHC transformation rules preserve solvability (in abstract
domains too).

Example: constraints over LIA.
A can be LIA or Octagons, difference constraints, ….

LOPSTR 2018Frankfurt am Main, September 5th, 2018 68

Implementation in VeriMAP

LOPSTR 2018Frankfurt am Main, September 5th, 2018 69

Short demo

LOPSTR 2018Frankfurt am Main, September 5th, 2018 70

Verification Problems

Types of Verified Properties and Programs

• NLIN: nonlinear or nested recursion

(e.g. some Ackermann variants, Sudan, McCarthy’s 91, Dijkstra’s fusc)

• MON: monotonicity
if i1 >= i2 then o1 >= o2

• INJ: injectivity
if i1 <> i2 then o1 <> o2

• FUN: functional dependency among variables
if i1 = i2 then o1 = o2

• NINT: non-interference

public output variables depend on public input variables only

• LOPT: loop and other compiler optimizations

e.g. loop-unswitching, loop-fission, loop-fusion, loop-reversal, strength-
reduction

LOPSTR 2018Frankfurt am Main, September 5th, 2018 71

Verification Problems

Types of Verified Properties and Programs

• ITE: equivalence of two iterative programs on integers

• ARR: equivalence of two programs on arrays

• REC: equivalence of two recursive programs

• I-R: equivalence of an iterative and a (non-tail) recursive program

e.g. greatest common divisor, n-th triangular number

• COMP: composition of different number of loops of integer and array
progr.

• PCOR: partial correctness properties of an iterative program

wrt a recursive functional postcondition

31 programs out of 163 are encoded using non-linear CHC

LOPSTR 2018Frankfurt am Main, September 5th, 2018 72

Experimental evaluation

● Timeout: 300 seconds

● No timeout occurred during
the application of the PP
strategy.

● CHC size increase due to PP
but no performance
degradation

LOPSTR 2018Frankfurt am Main, September 5th, 2018 73

Comments

• Our method for relational verification:

Translation to CHCs;

Satisfiability-Preserving Transformations of CHCs;

CHC Solving

• Parametric wrt programming language

• Fully automatic and effective on small-sized programs

Future work
• Proving relations across programming languages to validate program

translation/compilation

References
• [DFPP – SAS 16] [DFPP – TPLP 17]

• http://map.uniroma2.it/relprop/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 74

Verification of programs with
inductively-defined data structures

LOPSTR 2018Frankfurt am Main, September 5th, 2018 75

Verification of functional programs

● OCaml: A statically typed, functional, higher-order, OO language

● Computing the sum and the maximum of the absolute values of the
elements of a list:

type list = Nil | Cons of int * list

let rec listsum l = match l with
 | Nil -> 0
 | Cons(x, xs) → (abs x) + listsum xs

let rec listmax l = match l with
 | Nil -> 0
 | Cons(x, xs) → let m = listmax xs in max (abs x) m

● (Relational) Property: l. listsum(l) >= listmax(l)

http://map.uniroma2.it/relprop/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 76

Translation into CHCs

● The OCaml program is translated into CHCs:

76

listsum([],S) ← S=0
listsum([X|Xs],S) ← S=S1+A, abs(X,A), listsum(Xs,S1)
listmax([],M) ← M=0
listmax([X|Xs],M) ← abs(X,A), max(A,M1,M), listmax(Xs,M1)
abs(X,A) ← (X>=0, A=X)  (X<0, A= -X)
max(A,M1,M) ← (A>=M1, M=A)  (A<M1, M=M1)

● The property is translated into a CHC query:
 false ← S<M, sum(L,S), max(L,M)

● The clauses are satisfiable but CHC solvers do not solve them because models are
infinite formulas in the quantifier-free theory of integer lists:

listsum(L,S) ↦ (L=[], S=0)  (L=[X], abs(X,S)) (L=[X,Y], abs(X,A), abs(Y,B), S=A+B) …
 listmax(L,M) ↦ (L=[], M=0)  (L=[X], abs(X,M))  …

LOPSTR 2018Frankfurt am Main, September 5th, 2018 77

Solving CHCs on inductively defined data types
by induction

● Solution 1: Extending CHC solving with induction.
● Proof of satisfiability, by induction on list L:

 L,S,M. listsum(L,S), listmax(L,M)  S>=M

and hence listsum(L,S), listmax(L,M), S<M false

● Reynolds-Kuncak: Induction for SMT solvers, VMCAI 2015.

● Unno-Torii-Sakamoto: Automating induction for solving Horn clauses, CAV 2017.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 78

Solving CHCs on inductively defined data types
by CHC transformation

● Solution 2 (this work): Transform CHCs on inductive data types into
equisatisfiable CHCs without inductive data types (e.g., on integers
or booleans):

● Solved by Z3, without induction.

Solution: list-sum-max(S,M) S>=M, M>=0↦

● No infinite models are needed to show satisfiabilty

list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M), list-sum-max(S1,M1)
false ← S<M, list-sum-max(S,M)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 79

Eliminating inductive data structures

● Transformations for eliminating inductive data structures: Deforestation [Wadler ‘88],
Unnecessary Variable Elimination by Unfold/Fold [PP ‘91], Conjunctive Partial Deduction [De
Schreye et al. ‘99]

● Define a new predicate:
list-sum-max(S,M) ← listsum(L,S), listmax(L,M)

● Unfold:
list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M),

 listsum(Xs,S1), listmax(Xs,M1)

● Fold (eliminate lists):
list-sum-max(S,M) ← S=0, M=0
list-sum-max(S,M) ← S=S1+A, abs(X,A), max(A,M1,M),

 list-sum-max(S1,M1)

false ← S<M, list-sum-max(S,M)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 80

The Elimination Algorithm EC

Define new predicate(s)
with Ind. Data Structs in the body only

Ind.
Data Structs?

P0

yesno

Fold to eliminate Ind. Data Structs

Unfold new predicate(s)

Use Functionality (if possible)

Pn

LOPSTR 2018Frankfurt am Main, September 5th, 2018 81

Termination

● Algorithm E terminates if
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

LOPSTR 2018Frankfurt am Main, September 5th, 2018 82

A nonterminating transformation

● A property of lists

if M=N then A=Xs

Xs

Ys M N Zs

A

take drop

LOPSTR 2018Frankfurt am Main, September 5th, 2018 83

OCaml
Program

CHCs
w Ind.Data S

CHCs
w/o Ind.Data

S

Translation to CHCs [RCaml, Unno & al. 2017]

Algorithm EC [VeriMAP, De Angelis & al. 2014-18]

sat/unsat/unknown

Z3 CHC solver with SPACER engine [Komuravelli & al. 2013]

Verification of OCaml Programs

LOPSTR 2018Frankfurt am Main, September 5th, 2018 84

● Benchmark:

– 70 OCaml small (but non-trivial) programs on lists/trees from RCaml
and IsaPlanner (a proof planner for ISABELLE)

– 35 more OCaml programs (e.g., binary search trees)

Experimental evaluation

LOPSTR 2018Frankfurt am Main, September 5th, 2018 85

● Transformation is a viable alternative to induction to solve CHCs on
data structures

● We presented transformation algorithms which are effective on small,
non-trivial examples

Future work

– Higher-order functional programs

– Discover and apply lemmata to eliminate inductive data structures

References

– [DFPP - TPLP 18]

– https://fmlab.unich.it/iclp2018/

Comments

LOPSTR 2018Frankfurt am Main, September 5th, 2018 86

Verification of time-aware
business processes

LOPSTR 2018Frankfurt am Main, September 5th, 2018 87

 Business processes are ‘graphs’ for coordinating the activities of an
organization towards a business goal.

 An example: Purchase Order . A customer adds items to the shopping cart
and pays. Then, the vendor issues and sends the invoice, and in parallel,
prepares and delivers the order.

 There is no information on the durations of tasks.

Business Processes

start end

https://fmlab.unich.it/iclp2018/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 88

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

Time-Aware Business Processes

 Time-Reachability: checking whether or not to go from s to e takes less

than k units of time.
 Controllability: finding the durations of some controllable tasks
 so that a given time-reachability property holds.

controllable

controllable

Two problems :

 Information on the duration: Intervals: d ∈ [dmin, dmax] ⊂ N

LOPSTR 2018Frankfurt am Main, September 5th, 2018 89

Graphical notation for modeling organizational processes.

BPMN is a standard.

Tasks : atomic activities

Events : something that happens

Gateways: either branching or merging

Flows : order of execution (drawn as arrows)

Business Process Modeling and Notation (BPMN)

start end

s e

task1

LOPSTR 2018Frankfurt am Main, September 5th, 2018 91

Branch Gateways

 single incoming flow, multiple outgoing flows

 exclusive branch gateway (XOR)

 upon activation of the incoming flow
exactly one outgoing flow
is activated

 parallel branch gateway (AND)

 upon activation of the incoming flow
all outgoing flows
are activated

LOPSTR 2018Frankfurt am Main, September 5th, 2018 92

Branch Gateways

 single incoming flow, multiple outgoing flows

 exclusive branch gateway (XOR)

 upon activation of the incoming flow
exactly one outgoing flow
is activated

 parallel branch gateway (AND)

 upon activation of the incoming flow
all outgoing flows
are activated

LOPSTR 2018Frankfurt am Main, September 5th, 2018 94

Merge Gateways

 multiple incoming flows, single outgoing flow

 exclusive merge gateway (XOR)

 the outgoing flow is activated
upon activation of
one of the incoming flows

 parallel merge gateway (AND)

 the outgoing flow is activated
upon activation
of all the incoming flows

LOPSTR 2018Frankfurt am Main, September 5th, 2018 95

Merge Gateways

 multiple incoming flows, single outgoing flow

 exclusive merge gateway (XOR)

 the outgoing flow is activated
upon activation of
one of the incoming flows

 parallel merge gateway (AND)

 the outgoing flow is activated
upon activation
of all the incoming flows

LOPSTR 2018Frankfurt am Main, September 5th, 2018 96

Semantics of time-aware BPMN

 Transition relation between states: < F,t > → < F’,t’ >

 F : a set of fluents (i.e., a set of properties that hold at time point t)

- begins(x) x begins its execution (enactment)

- enacting(x,r) x is executing with r residual time to completion

- completes(x) x completes its execution

- enables(x,y) x enables its successor y

 x, y denote either tasks, or events, or gateways

 seq(x,y) there is an arrow from x to y

 t : time point (i.e., a non-negative integer)

 duration(x,d) the duration of x is d

LOPSTR 2018Frankfurt am Main, September 5th, 2018 97

Semantics of time-aware BPMN

completes(x)

begins(x)

enacting(x, r) with rd

r

task(x) 

duration(x, d) d 
 x is

d

- durations of events and gateways are assumed to be 0

LOPSTR 2018Frankfurt am Main, September 5th, 2018 98

Semantics of time-aware BPMN

Instantaneous transition:

begins(x) enacting(x, d)

< F,t > → < F’,t >

LOPSTR 2018Frankfurt am Main, September 5th, 2018 100

Semantics of time-aware BPMN

(S
2
) If the parallel branch x completes,

 then all its successors s are enabled, istantaneously
x

< F ,t > → < F’,t >
Instantaneous transitions:

LOPSTR 2018Frankfurt am Main, September 5th, 2018 101

Semantics of time-aware BPMN

(S
2
) If the parallel branch x completes,

 then all its successors s are enabled, istantaneously

< F ,t > → < F’,t >
Instantaneous transitions:

x

LOPSTR 2018Frankfurt am Main, September 5th, 2018 104

Semantics of time-aware BPMN

The time-elapsing transition:

Time elapses when no istantaneous transition can occur.

All enacting tasks proceed in parallel for a time equal to the minimum of
all residual times.

< F,t > → < F’,t’ >

LOPSTR 2018Frankfurt am Main, September 5th, 2018 108

Weak Controllability

 Assume:

 some tasks are controllable (e.g., internal to the organization)

 some tasks are uncontrollable (e.g., external to the organization)

 Weak Controllabilty: For all durations of the uncontrollable tasks (within the

given time intervals), we can determine durations of the controllable tasks

(within the given time intervals), s.t. a state can be reached and a given time

constraint is satisfied.

constraint: 3 ≤ Ttotal ≤ 7

a solution: if Dpur=1 then Dcc=Dcol=2 else Dcc=Dcol=1

s

e

cc_charge

collect_items

purchase

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable

LOPSTR 2018Frankfurt am Main, September 5th, 2018 109

Strong Controllability

 Weak Controllabilty may not be useful when some uncontrollable

 tasks occur after controllable ones.

 Strong Controllability: We can determine durations of the controllable tasks

(within the given time intervals) s.t., for all durations of the uncontrollable

tasks (within the given time intervals), a state can be reached and a given time

constraint is satisfied.
The exact duration of the delivery is not known when packaging.

constraint: 4 ≤ Ttotal ≤ 7
a solution: 1 ≤ Dpack ≤ 2

packagings

e

[1,4]

controllable uncontrollable

[3,5]

delivery

LOPSTR 2018Frankfurt am Main, September 5th, 2018 111

CHC translation

< F,t > → < F’,t >Instantaneous transition:

begins(x) enacting(x, d)

where U,C are tuples of uncontrollable and controllable durations, resp.

LOPSTR 2018Frankfurt am Main, September 5th, 2018 112

CHC interpreter of time-aware BPMN

LOPSTR 2018Frankfurt am Main, September 5th, 2018 113

CHC translation

reach: reflexive, transitive closure of the transition relation tr

 R1: reach(S,S,U,C) ←

 R2: reach(S0,S2,U,C) ← tr (S0,S1,U,C), reach(S1,S2,U,C)

LOPSTR 2018Frankfurt am Main, September 5th, 2018 114

Encoding Reachability

 Reachability Property.

RP : reachProp(U,C) ← c(T,U,C), reach(init, fin(T),U,C)

 where c(T,U,C) is a constraint

 Initial state. init : < {begins(start)}, 0 >

 Final state. fin(T) : < {completes(end)}, T >

LOPSTR 2018Frankfurt am Main, September 5th, 2018 115

 Let Sem be the CHC encoding of semantics:
 C1-C7 (for tr) and R1-R2 (for reach).
 Let LIA be the theory of Linear Integer Arithmetics.

 Weak Controllability

Sem ∪ {RP} U LIA ∀U. adm(U) → ∃C reachProp(U,C)

 where adm(U) iff the durations in U belong to the given intervals

 Strong Controllability

Sem ∪ {RP} U LIA ∃C. ∀U. adm(U) → reachProp(U,C)

Encoding Controllability

⊨

⊨

LOPSTR 2018Frankfurt am Main, September 5th, 2018 116

Verifying controllability

 Validity of Weak and Strong Controllabilities:

 cannot be proved by CHC solvers over LIA (e.g., Z3), because of the complex
terms (such as those denoting sets) and the findall predicate in Sem

 cannot be proved by CLP systems, because of ∃∀ and ∀∃

 solvers and CLP systems have termination problems due to recursive reach.

● We developed special purpose algorithms for solving weak and strong controllability.

 Reduce solving of ∃∀ and ∀∃ with recursive clauses to

– computing answers to queries

– solving a set of quantified LIA contraints

LOPSTR 2018Frankfurt am Main, September 5th, 2018 117

Experimental evaluation

 Different tools have been used:

● VeriMAP for generating CHC

● SICStus Prolog: Computation of answer constraints

● Z3: SMT solver for checking quantified LIA formulas

Experimentation on various examples:

 Purchase order [DFMPP 2016]

 Request Day-Off Approval [Huai et al. 2010]

 STEMI: Emergency Department Admission [Combi et al. 2009]

 STEMI: Emergency Department + Coronary Care Unit Admission [Combi et al.

2012]

LOPSTR 2018Frankfurt am Main, September 5th, 2018 118

Comments

 Controllability was introduced in various contexts
 [Vidal-Fargier 1999, Combi-Posenato 2009, Cimatti et al. 2015,

 Zavatteri et al. 2017]

 Future work
 Larger fragment of BPMN: timers, interrupting events, ...
 Data [Montali et al. 2013, Deutsch 2014, ...]
 Ontologies for tasks, …

 References

– [DFMPP – LOPSTR 16] [DFMPP – RuleML+RR 17]

– http://map.uniroma2.it/lopstr16/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 119

Final comments

 We presented a flexible framework for CHC verification

 parametric with respect to the semantics and the property

 use of satisfiability-preserving and solvability-preserving
CHC transformations

 can improve precision state-of-the-art CHC solvers

 Future work
– Make it more usable (better interface, web interface)
– Make it more extensible (define API, hooks, …)
– Integrate external libraries and tools

 You are welcome to use it for your verification tasks.
– We would be happy to help you!

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 120

Thank you

Frankfurt am Main, September 5th, 2018 LOPSTR 2018 121

LOPSTR 2018Frankfurt am Main, September 5th, 2018 122

Multi-Step Operational Semantics

Encoding the Operational Semantics

function call x=f(e1,...,en); “return” case

tr(cf(cmd(L,asgn(X,call(F,Es))), (D,S)), source configuration
 cf(cmd(L2,C2), (D2,S2))) target configuration

←
 eval_list(Es,D,S,Vs), evaluate function parameters
 build_funenv(F,Vs,FEnv), build function environment
 firstlab(F,FL), at(FL,C), first label and command function def
 reach(cf(cmd(FL,C), (D,FEnv)), function execution
 cf(cmd(LR,return(E)),(D1,S1))), return
 eval(E,(D1,S1),V), evaluate returned expression
 update((D1,S),X,V,(D2,S2)), update caller environment
 nextlab(L,L2), at(L2,C2) next label and command

LOPSTR 2018Frankfurt am Main, September 5th, 2018 123

VCs Multi-Step Semantics

VCs generated by using the multi-step semantics

● Non linear recursive: multiple atoms in the body

● Predicate arity is even (variables for source and target
configurations)

false ← X>=1,Y>=1,X1=< -1, new3(X,Y, X1,Y1)
new3(X,Y, X1,Y1) ← X+1=<Y, new4(X,Y, X1,Y1) loop execution
new3(X,Y, X1,Y1) ← X>=Y+1, new4(X,Y, X1,Y1) loop execution
new3(X,Y, X,Y) ← X=Y loop exit
new4(X,Y, X3,Y3) ← X>=Y+1, A=X, B=Y, X2=R1, then branch
 new6(X,Y,A,B,R, X1,Y1,A1,B1,R1),
 new3(X2,Y1, X3,Y3)
new4(X,Y, X3,Y3) ← X=<Y, A=Y, B=X, Y2=R1, else branch
 new6(X,Y,A,B,R, X1,Y1,A1,B1,R1),
 new3(X1,Y2, X3,Y3)
new6(X,Y,A,B,R, X,Y,A,B,R1) ← R1=A-B sub function call

LOPSTR 2018Frankfurt am Main, September 5th, 2018 124

Small-Step Semantics

● Keep a stack of activation frames

● Function call: push an element on top of the stack

tr(cf(cmd(L,asgn(X,call(F,Es))),D,T),
 cf(cmd(FL,C), D,[frame(L1,X,Fenv)|T])) ←

nextlab(L,L1),
 loc_env(T,S), eval_list(Es,D,S,Vs),
 build_funenv(F,Vs,FEnv),
 firstlab(F,FL), at(FL,C).

L1 label where to jump after returning
X value returned by the function call
FEnv local environment used during the execution of the function call

● Function return: pop an element from the stack

tr(cf(cmd(L,return(E)),D, [frame(L1,X,S) |T]),
 cf(cmd(L1,C), D1,T1)) ←
 eval(E,D,S,V),
 update((D,T),X,V,(D1,T1)),
 at(L1,C).

LOPSTR 2018Frankfurt am Main, September 5th, 2018 125

Small-Step Semantics

● Encoding correctness when using the Small-Step semantics

 false ← initConf(C), reach(C).
 reach(C) ← tr(C,C1), reach(C1).
 reach(C) ← finalConf(C).

● VCs generated by using the Small-Step semantics

● Linear recursive (at most one atom in the body)

● More predicates and clauses than in Multi-Step semantics VCs
Multiple predicates for the calls to the sub function (e.g. new11 and
new8)

● Half the variables w.r.t. MS semantics VCs

false ← X>=1, Y>=1, new3(X,Y).
new3(X,Y) ← X=<-1, Y=X.
new3(X,Y) ← X+1=<Y, new4(X,Y).
new3(X,Y) ← X>=1+Y, new4(X,Y).
new4(X,Y) ← X>=Y+1, new6(X,Y).
new4(X,Y) ← X=<Y, new7(X,Y).

new6(X,Y) ← A=X, B=Y, new11(X,Y,A,B,R).
new7(X,Y) ← A=Y, B=X, new8(X,Y,A,B,R).
new8(X,Y,A,B,R) ← R1=A-B, new9(X,Y,A,B,R1).
new9(X,Y,A,B,R) ← Y1=R, new3(X,Y1).
new11(X,Y,A,B,R) ← R1=A-B, new12(X,Y,A,B,R1).
new12(X,Y,A,B,R) ← X1=R, new3(X1,Y).

LOPSTR 2018Frankfurt am Main, September 5th, 2018 126

LOPSTR 2018Frankfurt am Main, September 5th, 2018 127

Termination: No sharing cycles

● Algorithm E terminates if
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

No multiple occurrences of the same variable in each atom (wlog)

labeled (multi)graph: the nodes are the atoms of the query and there is an
edge between two atoms, labeled by variable X, iff they share X

sharing cycle: path from an atom to itself labeled by distinct variables

T

U

LOPSTR 2018Frankfurt am Main, September 5th, 2018 128

Termination: Quasi-descending

● Algorithm E terminates if
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

Slice: take one “inductive” argument for each predicate

Quasi-descending: body arguments are (possibly
non-strict) subterms of head arguments

LOPSTR 2018Frankfurt am Main, September 5th, 2018 129

Termination: Disjoint slices

● Algorithm E terminates if
- the query has no sharing cycles
- the other clauses have a disjoint, quasi-descending slice decomposition

Disjoint: no variable is shared between two
slices of the same clause

http://map.uniroma2.it/lopstr16/

LOPSTR 2018Frankfurt am Main, September 5th, 2018 130

● A property of lists

if M=N then A=Xs

Xs

Ys M N Zs

A

take drop

The query has a sharing cycle

A nonterminating transformation

LOPSTR 2018Frankfurt am Main, September 5th, 2018 131

● Define new predicates with constraints in LIA or Bool

– use widening operators [Cousot-Halbwachs ‘77, Bagnara et al.
‘08]

● EC guarantees equisatisfiability

● If E terminates, then EC terminates

The Elimination Algorithm EC

LOPSTR 2018Frankfurt am Main, September 5th, 2018 132

 (1) Generate a disjunction a(U,C) of constraints

 (2) Check whether or not LIA ∀U. adm(U) → ∃C. a(U,C)

Assume a sound and complete LIA-constraint solver: SOLVE.
For any set ISP of clauses and query Q: c, A1,…,An where c
is a LIA constraint,

 SOLVE(ISP ,Q) returns

 a satisfiable constraint a s.t. ISP U LIA ∀(a → Q), if any,

 false, otherwise

In particular, if SOLVE(ISP , reachProp(U,C)) = a(U,C), then

 ISP U LIA ∀U,C. (a(U,C) → reachProp(U,C))

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

⊨

⊨

⊨

 ISP : q(X) ← r(X)

 r(X) ← X>0

 SOLVE(ISP , q(X)) returns the constraint X>0

 Indeed, ISP U LIA ∀X (X>0 → q(X))

(4) Weak Controllability Algorithm

⊨

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

a(U,C) := false;
do {

Q := (reachProp(U,C)  ∀C. a(U,C));

if (SOLVE(I
SP

, Q) = false) return false;

a(U,C) := a(U,C) ∨ SOLVE(I
SP

,Q);

} while (LIA ∀U. adm(U) → ∃C. a(U,C)) ;

return a(U,C);
⊨

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Transformations of Functional and Logic Programs
	Transformation Rules for CHCs_clipboard0
	Transformation Rules for CHCs_clipboard1
	Transformation Rules for CHCs
	… Transformation rules for CHCs_clipboard2
	… Transformation rules for CHCs_clipboard3
	… Transformation rules for CHCs_clipboard4
	… Transformation rules for CHCs
	Transformation Strategies
	Specialization Strategy: An Example
	Slide 17
	Slide 18
	Slide 19
	A Generic U/F Transformation Strategy
	Some Issues About the U/F Strategy
	Slide 24
	CHC Specialization as a Verification Condition Generator
	Slide 26
	A Small-Step Operational Semantics
	A CHC Interpreter for the Small-Step Semantics
	CHC Interpreter (Asgn)
	Encoding Partial Correctness Properties
	Slide 31
	VCGen: Generating Verification Conditions
	Generating Verification Conditions: An Example
	Slide 34
	Slide 35
	Slide 36
	Experimental evaluation
	Slide 38
	Slide 39
	Slide 40
	VCTransf: Specializing Verification Conditions
	VCTransf as CHC Solving
	Iterated CHC Specialization
	Iterated CHC Specialization: SumUpto Example_clipboard13
	Iterated CHC Specialization: SumUpto Example_clipboard14
	Iterated CHC Specialization: SumUpto Example_clipboard15
	Iterated CHC Specialization: SumUpto Example
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Relational Properties
	An Example
	Verification of Relational Properties
	Verification through Horn Clause Transformation
	Relational properties
	Example, cont’d
	Encoding the Transition Semantics in CHCs
	Translating Relational Properties into CHCs
	Example Cont’d: CHC Specialization
	Limitations of the Specialized CHCs
	Example Cont’d: Predicate Pairing
	Inferring Inter-Predicate Relations via CHC Transformation
	Slide 67
	Implementation in VeriMAP
	Slide 69
	Verification Problems
	Slide 71
	Slide 72
	Conclusions
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Business Processes
	Slide 88
	Business Process Modeling and Notation (BPMN)
	Slide 91
	Slide 92
	Slide 94
	Slide 95
	Semantics of time-aware BPMN
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 104
	Weak Controllability
	Strong Controllability
	Slide 111
	CHC intepreter of time-aware BPMN
	Slide 113
	(2) Encoding Reachability
	(2) Encoding Controllability
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	(4) Weak Controllability Algorithm
	Slide 134
	Slide 135

